Learn From Voxels: Knowledge Distillation for Pillar-Based 3D Object Detection With LiDAR Point Clouds in Autonomous Driving

激光雷达 点云 体素 支柱 对象(语法) 人工智能 计算机视觉 计算机科学 点(几何) 目标检测 蒸馏 遥感 地理 模式识别(心理学) 工程类 数学 几何学 化学 色谱法 机械工程
作者
Jinbao Zhang,Jun Liu,Pei Yu,Jingwei Zhang,Xian Zhao
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tiv.2024.3397617
摘要

3D object detection has achieved great progress recently. However, the contradiction between high accuracy and rapid inference is a crucial issue, which is particularly evident in voxel-based networks and pillar-based networks. Voxel-based networks can achieve high accuracy, but the 3D sparse convolution backbone in voxel-based networks blocks real-time inference and model deployment. Pillar-based networks are deploymentfriendly and can achieve real-time inference, but they cannot perform as accurately as voxel-based networks. To reduce the gap in accuracy between these two types of networks as well as keep the inference speed of pillar-based networks, in this paper, we propose Learn from Voxel Knowledge Distillation (LVKD), an effective voxel-to-pillar knowledge distillation framework. In our LVKD, we design Sparse Convolution to Pillar Knowledge Distillation (SCP KD) to transfer the rich knowledge from the voxel-based teacher network to the student network. The SCP KD selects the crucial regions and transfers the rich information from the teacher network. In addition, to alleviate the representation differences between teacher and student networks and improve the performance of distillation, we propose the Voxel Occupancy Prediction module, a plug-and-play task that encourages the pillar-based network to predict the occupancy of each voxel to achieve the reconstruction of structure and spatial information. We conduct experiments on two popular public datasets (i.e., nuScenes and KITTI), and the results demonstrate the superiority of the proposed LVKD framework. In particular, our LVKD framework can enhance the performance of the pillarbased network by 3.1% in mean average precision and 2.6% in the nuScenes detection score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
不来完成签到,获得积分10
2秒前
Chemistry发布了新的文献求助10
2秒前
4秒前
不来发布了新的文献求助30
5秒前
月亮完成签到,获得积分10
6秒前
JamesPei应助WangHY采纳,获得10
8秒前
8秒前
月亮发布了新的文献求助30
8秒前
8秒前
11秒前
水博士完成签到,获得积分10
12秒前
华仔应助月亮采纳,获得10
14秒前
17秒前
享音发布了新的文献求助10
20秒前
20秒前
突突突完成签到,获得积分10
20秒前
mikasa发布了新的文献求助10
24秒前
沉静WT完成签到 ,获得积分10
26秒前
干净幻梦完成签到,获得积分10
27秒前
YYL完成签到 ,获得积分10
27秒前
吡咯爱成环应助kustmustshnu采纳,获得10
27秒前
29秒前
conghuiqu完成签到 ,获得积分10
30秒前
可爱的函函应助享音采纳,获得10
35秒前
炙热傲菡发布了新的文献求助30
36秒前
Running发布了新的文献求助10
42秒前
缓慢的语蕊完成签到 ,获得积分10
42秒前
姜水完成签到,获得积分10
50秒前
共享精神应助liuzengzhang666采纳,获得10
50秒前
陈卓完成签到,获得积分10
54秒前
炙热傲菡完成签到,获得积分20
55秒前
风吹草动玉米粒完成签到,获得积分10
56秒前
第一感觉完成签到,获得积分10
1分钟前
胜天半子应助闪闪龙猫采纳,获得10
1分钟前
万能图书馆应助Ldq采纳,获得30
1分钟前
星辰大海应助sure采纳,获得10
1分钟前
义气高丽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3370467
求助须知:如何正确求助?哪些是违规求助? 2989086
关于积分的说明 8733718
捐赠科研通 2672039
什么是DOI,文献DOI怎么找? 1463810
科研通“疑难数据库(出版商)”最低求助积分说明 677315
邀请新用户注册赠送积分活动 668542