Nitrogen‐Rich Carbon Dot‐Mediated n→π* Electronic Transition in Carbon Nitride for Superior Photocatalytic Hydrogen Peroxide Production

材料科学 光催化 纳米片 氮化碳 水热合成 异质结 带隙 制氢 碳纤维 纳米技术 热液循环 化学工程 催化作用 光电子学 有机化学 化学 复合材料 工程类 复合数
作者
Huazhang Guo,Zhou Li,Kai Huang,Yongqiang Li,Weidong Hou,Huange Liao,Cheng Lian,Siwei Yang,Deli Wu,Zhendong Lei,Zheng Liu,Liang Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (38) 被引量:79
标识
DOI:10.1002/adfm.202402650
摘要

Abstract Solar‐driven synthesis of hydrogen peroxide (H 2 O 2 ) through photocatalysis stands out as a promising avenue for sustainable energy generation, marked by environmental friendliness and industrial feasibility. However, the inherent limitations of carbon nitride (CN) in photocatalytic H 2 O 2 production significantly impede their performance. Herein, a novel 0D/2D carbon dots‐modified CN nanosheet heterojunction (CDsMCN) is introduced, synthesized through a hydrothermal‐calcination tandem strategy induced by CDs derived from melamine. This innovative technique enhances the n→π* electronic transition in CDsMCN, accelerating the separation efficiency of electron‐hole pairs, boosting oxygen adsorption, and promoting a highly selective 2e − ORR. Comparative to pristine CN, CDs 10 MCN exhibited a remarkable tenfold increase in H 2 O 2 production, reaching an impressive 1.48 mmol L −1 . Furthermore, CDs 10 MCN demonstrates exceptional stability, maintaining its catalytic efficiency at the initial level over four consecutive cycles. The notable achievement of a molar selectivity of H 2 O 2 ≈80% at an onset potential of 0.6 V (vs RHE) underscores its exceptional ability to produce the desired product selectively. Advanced in situ characterization together with DFT calculations revealed that the ultrathin CDs 10 MCN nanosheet heterojunction with enhanced n→π* electronic transition improves its optical properties, reduces bandgap, facilitates fast charge migration, and increases photocatalytic H 2 O 2 performance, thereby serving as a promising candidate for advanced catalytic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
PPP完成签到,获得积分10
1秒前
思源应助YOLO采纳,获得30
1秒前
研友_8yN60L完成签到,获得积分10
5秒前
小蜗牛发布了新的文献求助10
6秒前
6秒前
7秒前
西海岸的风完成签到 ,获得积分10
7秒前
9秒前
xxx发布了新的文献求助10
11秒前
12秒前
clyhg完成签到,获得积分10
13秒前
所所应助周晓睿采纳,获得10
15秒前
弘卿完成签到,获得积分10
15秒前
道明嗣完成签到 ,获得积分10
16秒前
18秒前
20秒前
21秒前
21秒前
周晓睿完成签到 ,获得积分10
22秒前
李JJ完成签到,获得积分10
23秒前
天天快乐应助朱婷采纳,获得10
25秒前
单纯芹菜发布了新的文献求助10
26秒前
xxx完成签到,获得积分10
29秒前
29秒前
30秒前
隐形曼青应助Jimmy Ko采纳,获得10
31秒前
怂怂鼠发布了新的文献求助10
34秒前
周晓睿发布了新的文献求助10
35秒前
35秒前
旺旺大礼包完成签到,获得积分10
37秒前
大个应助swallow采纳,获得10
38秒前
独特觅翠举报333求助涉嫌违规
40秒前
41秒前
ttbear11发布了新的文献求助10
41秒前
QQ完成签到,获得积分10
42秒前
waytrue发布了新的文献求助10
42秒前
hhl完成签到,获得积分10
42秒前
浮游应助小杜采纳,获得10
44秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298879
求助须知:如何正确求助?哪些是违规求助? 4447312
关于积分的说明 13842156
捐赠科研通 4332840
什么是DOI,文献DOI怎么找? 2378366
邀请新用户注册赠送积分活动 1373656
关于科研通互助平台的介绍 1339240