Nitrogen‐Rich Carbon Dot‐Mediated n→π* Electronic Transition in Carbon Nitride for Superior Photocatalytic Hydrogen Peroxide Production

材料科学 光催化 纳米片 氮化碳 水热合成 异质结 带隙 制氢 碳纤维 纳米技术 热液循环 化学工程 催化作用 光电子学 有机化学 化学 工程类 复合数 复合材料
作者
Huazhang Guo,Zhou Li,Kai Huang,Yongqiang Li,Weidong Hou,Huange Liao,Cheng Lian,Siwei Yang,Deli Wu,Zhendong Lei,Zheng Liu,Liang Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (38) 被引量:25
标识
DOI:10.1002/adfm.202402650
摘要

Abstract Solar‐driven synthesis of hydrogen peroxide (H 2 O 2 ) through photocatalysis stands out as a promising avenue for sustainable energy generation, marked by environmental friendliness and industrial feasibility. However, the inherent limitations of carbon nitride (CN) in photocatalytic H 2 O 2 production significantly impede their performance. Herein, a novel 0D/2D carbon dots‐modified CN nanosheet heterojunction (CDsMCN) is introduced, synthesized through a hydrothermal‐calcination tandem strategy induced by CDs derived from melamine. This innovative technique enhances the n→π* electronic transition in CDsMCN, accelerating the separation efficiency of electron‐hole pairs, boosting oxygen adsorption, and promoting a highly selective 2e − ORR. Comparative to pristine CN, CDs 10 MCN exhibited a remarkable tenfold increase in H 2 O 2 production, reaching an impressive 1.48 mmol L −1 . Furthermore, CDs 10 MCN demonstrates exceptional stability, maintaining its catalytic efficiency at the initial level over four consecutive cycles. The notable achievement of a molar selectivity of H 2 O 2 ≈80% at an onset potential of 0.6 V (vs RHE) underscores its exceptional ability to produce the desired product selectively. Advanced in situ characterization together with DFT calculations revealed that the ultrathin CDs 10 MCN nanosheet heterojunction with enhanced n→π* electronic transition improves its optical properties, reduces bandgap, facilitates fast charge migration, and increases photocatalytic H 2 O 2 performance, thereby serving as a promising candidate for advanced catalytic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助一平采纳,获得10
刚刚
1秒前
写不出来完成签到,获得积分10
2秒前
儒雅醉冬完成签到,获得积分10
2秒前
lzp完成签到 ,获得积分10
2秒前
杰森斯坦虎完成签到,获得积分10
2秒前
2秒前
3秒前
叭叭完成签到,获得积分10
3秒前
Accept完成签到,获得积分10
3秒前
W哇完成签到,获得积分10
4秒前
肖肖完成签到,获得积分10
4秒前
4秒前
super小萌萌完成签到,获得积分10
4秒前
April完成签到 ,获得积分10
4秒前
雪白问兰应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得20
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
maox1aoxin应助科研通管家采纳,获得80
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
zhong完成签到,获得积分10
5秒前
36456657应助科研通管家采纳,获得10
5秒前
100完成签到,获得积分20
5秒前
领导范儿应助科研通管家采纳,获得30
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
控制小弟应助科研通管家采纳,获得10
5秒前
6秒前
SciGPT应助从容的幻然采纳,获得30
6秒前
无情念之完成签到,获得积分20
6秒前
YL完成签到,获得积分10
6秒前
6秒前
京言完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672