电介质
铁电性
材料科学
晶体管
复合数
有机半导体
光电子学
人工神经网络
电子工程
计算机科学
复合材料
电气工程
电压
人工智能
工程类
作者
C.Y. Li,Fuguo Tian,Zhongzhong Luo,Haoyang Luo,Jie Yan,Xiangdong Xu,Xiang Wan,Li Zhu,Chee Leong Tan,Zhihao Yu,Yong Xu,Huabin Sun
摘要
Organic ferroelectric field-effect transistors (Fe-OFETs) exhibit exceptional capabilities in mimicking biological neural systems and represent one of the primary options for flexible artificial synaptic devices. Ferroelectric polymers, such as poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), given their strong ferroelectricity and facile solution processing, have emerged as the preferred choices for the ferroelectric dielectric layer of wearable devices. However, the solution processed P(VDF-TrFE) films can lead to high interface roughness, prone to cause excessive gate leakage. Meanwhile, the ferroelectric layer in neural computing and memory applications also faces a trade-off between storage time and energy for read/write operations. This study introduces a composite dielectric layer for Fe-OFETs, fabricated via a solution-based process. Different thicknesses of poly(N-vinylcarbazole) (PVK) are shown to significantly alter the ferroelectric hysteresis window and leakage current. The optimized devices exhibit synaptic plasticity with a transient current of 3.52 mA and a response time of approximately 50 ns. The Fe-OFETs with the composite dielectric were modeled and integrated into convolutional neural networks, achieving a 92.95% accuracy rate. This highlights the composite dielectric's advantage in neuromorphic computing. The introduction of PVK optimizes the interface and balances device performance of Fe-OFETs for neuromorphic computing.
科研通智能强力驱动
Strongly Powered by AbleSci AI