Metal–Organic Frameworks (MOFs)-Based Piezoelectric-Colorimetric Hybrid Sensor for Monitoring Green Leaf Volatiles

金属有机骨架 压电 材料科学 纳米技术 金属 环境化学 化学 有机化学 冶金 复合材料 吸附
作者
Laxmi Raj Jaishi,Wei Ding,Rick A. Kittelson,Francis Tsow,Xiaojun Xian
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (12): 6553-6562 被引量:5
标识
DOI:10.1021/acssensors.4c02016
摘要

Green leaf volatiles (GLVs) are organic compounds emitted by plants in response to insect attacks, offering early detection potential. Current GLV detection methods like gas chromatography–mass spectroscopy (GC-MS) are costly and complex and lack real-time monitoring capability. There is an unmet need for affordable and portable sensors with high sensitivity to monitor GLVs in real time. In this study, we developed a novel sensor capable of capturing piezoelectric and colorimetric signals for the sensitive and selective detection of 1-hexanol, a well-known green leaf volatile. We used a piezoelectric micro quartz tuning fork (MQTF) as the multifunctional transducer. The MQTF's two prongs were coated with a metal–organic framework (MOF)-thymol blue hybrid sensing material, enabling detection through both color change and resonating frequency shift upon 1-hexanol binding. MOFs offer a high surface area and tunable pore size, which enhance sensor sensitivity and selectivity. The sensor's frequency shift indicates mass change due to 1-hexanol binding to MOFs, while the colorimetric sensing signal relies on thymol blue's reaction with 1-hexanol. Our test results demonstrate the sensor's ability to detect 1-hexanol from 62.5 ppb to 250 ppm with high sensitivity and selectivity when the colorimetric and piezoelectric sensing signals are integrated. Due to its compact size, affordability, easy fabrication, wide detection range, and high sensitivity and selectivity, this colorimetric-piezoelectric sensor could serve as an effective tool for early detection of insect herbivore attacks and timely crop protection strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助webel采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得20
1秒前
Lee发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
菲菲应助科研通管家采纳,获得10
1秒前
烂漫的筮完成签到,获得积分10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
longer发布了新的文献求助10
3秒前
3秒前
斯文败类应助树懒采纳,获得10
3秒前
3秒前
我是老大应助阳光的梦寒采纳,获得50
3秒前
上官蔚蓝发布了新的文献求助10
3秒前
三世完成签到 ,获得积分10
4秒前
4秒前
可靠的白竹完成签到 ,获得积分10
4秒前
小吴发布了新的文献求助10
4秒前
Lucas应助平淡冰蝶采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助Kal采纳,获得10
6秒前
天天快乐应助odetta采纳,获得10
6秒前
6秒前
6秒前
7秒前
火乐发布了新的文献求助10
7秒前
zzww完成签到 ,获得积分10
7秒前
善学以致用应助蜘蛛侠采纳,获得10
8秒前
桐桐应助about0731采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
无花果应助美丽星期五采纳,获得10
9秒前
迷人的芹菜完成签到,获得积分20
9秒前
星河完成签到 ,获得积分10
9秒前
zhq发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685