Portfolio Optimization Based on Almost Second-Degree Stochastic Dominance

随机优势 学位(音乐) 文件夹 投资组合优化 随机优化 优势(遗传学) 数学 数学优化 数理经济学 经济 计量经济学 金融经济学 生物 物理 生物化学 基因 声学
作者
Chunling Luo,Piao Chen,Patrick Jaillet
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:10
标识
DOI:10.1287/mnsc.2022.01092
摘要

In portfolio optimization, the computational complexity of implementing almost stochastic dominance has limited its practical applications. In this study, we introduce an optimization framework aimed at identifying the optimal portfolio that outperforms a specified benchmark under almost second-degree stochastic dominance (ASSD). Our approach involves discretizing the return range and establishing both sufficient and necessary conditions for ASSD. We then propose a three-step iterative procedure: first, identifying a candidate portfolio; second, assessing its optimality; and third, refining the discretization scheme. Theoretical analysis guarantees that the portfolio identified through this iterative process improves with each iteration, ultimately converging to the optimal solution. Our empirical study, utilizing industry portfolios, demonstrates the efficacy of our approach by consistently identifying an optimal portfolio within a few iterations. Furthermore, comparative analysis against other decision criteria, such as mean-variance, second-degree stochastic dominance, and third-degree stochastic dominance, reveals that ASSD generally leads to portfolios with higher out-of-sample average excess returns but also entails increased variations and risks. This paper was accepted by Agostino Capponi, finance. Funding: C. Luo acknowledges financial support from the National Natural Science Foundation of China [Grant 72101070] and the Zhejiang Provincial Natural Science Foundation of China [Grant LY23G010001]. P. Chen acknowledges financial support from the National Natural Science Foundation of China [Grant 72401253]. P. Jaillet acknowledges financial support from the Office of Naval Research [Grant N00014-18-1-2122 and N00014-24-1-2470] and the Air Force Office of Scientific Research [Grant FA9550-23-1-0182 and Grant FA9550-23-1-0190]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.01092 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
科研通AI2S应助lyx采纳,获得10
4秒前
Zoe013发布了新的文献求助10
5秒前
企鹅完成签到,获得积分20
6秒前
6秒前
6秒前
天神发布了新的文献求助10
7秒前
7秒前
naturehome完成签到,获得积分10
7秒前
8秒前
顺利滑板发布了新的文献求助10
8秒前
11秒前
12秒前
小蓝发布了新的文献求助10
12秒前
科研通AI5应助allen7u采纳,获得10
12秒前
完美世界应助单薄二娘采纳,获得10
12秒前
冯俊驰发布了新的文献求助10
12秒前
12秒前
李健应助zhangjianan采纳,获得10
12秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
桐桐应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
乐乐应助科研通管家采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
wswswsws应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
周鑫喆完成签到 ,获得积分10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
加菲丰丰应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
大模型应助yeandpeng采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408