Portfolio Optimization Based on Almost Second-Degree Stochastic Dominance

随机优势 学位(音乐) 文件夹 投资组合优化 随机优化 优势(遗传学) 数学 数学优化 数理经济学 经济 计量经济学 金融经济学 生物 物理 生物化学 声学 基因
作者
Chunling Luo,Piao Chen,Patrick Jaillet
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01092
摘要

In portfolio optimization, the computational complexity of implementing almost stochastic dominance has limited its practical applications. In this study, we introduce an optimization framework aimed at identifying the optimal portfolio that outperforms a specified benchmark under almost second-degree stochastic dominance (ASSD). Our approach involves discretizing the return range and establishing both sufficient and necessary conditions for ASSD. We then propose a three-step iterative procedure: first, identifying a candidate portfolio; second, assessing its optimality; and third, refining the discretization scheme. Theoretical analysis guarantees that the portfolio identified through this iterative process improves with each iteration, ultimately converging to the optimal solution. Our empirical study, utilizing industry portfolios, demonstrates the efficacy of our approach by consistently identifying an optimal portfolio within a few iterations. Furthermore, comparative analysis against other decision criteria, such as mean-variance, second-degree stochastic dominance, and third-degree stochastic dominance, reveals that ASSD generally leads to portfolios with higher out-of-sample average excess returns but also entails increased variations and risks. This paper was accepted by Agostino Capponi, finance. Funding: C. Luo acknowledges financial support from the National Natural Science Foundation of China [Grant 72101070] and the Zhejiang Provincial Natural Science Foundation of China [Grant LY23G010001]. P. Chen acknowledges financial support from the National Natural Science Foundation of China [Grant 72401253]. P. Jaillet acknowledges financial support from the Office of Naval Research [Grant N00014-18-1-2122 and N00014-24-1-2470] and the Air Force Office of Scientific Research [Grant FA9550-23-1-0182 and Grant FA9550-23-1-0190]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.01092 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
执着的安雁完成签到,获得积分10
2秒前
不懈奋进应助nz采纳,获得30
3秒前
3秒前
大气乘风发布了新的文献求助10
4秒前
昵称发布了新的文献求助10
4秒前
林大侠发布了新的文献求助10
5秒前
Atom完成签到 ,获得积分10
5秒前
燃尔完成签到 ,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
Hello应助啦啦啦采纳,获得10
7秒前
7秒前
8秒前
9秒前
搜集达人应助全若之采纳,获得10
9秒前
9秒前
xiangeyedu发布了新的文献求助10
10秒前
10秒前
SaqLa完成签到,获得积分10
10秒前
HXY发布了新的文献求助30
11秒前
华仔应助晨晨采纳,获得30
12秒前
科目三应助小卫采纳,获得10
12秒前
内向雨南完成签到,获得积分10
13秒前
zgliu78完成签到,获得积分10
13秒前
思源应助zhaosh采纳,获得10
14秒前
14秒前
小马甲应助第八维采纳,获得30
15秒前
贺呵呵发布了新的文献求助10
15秒前
15秒前
酷波er应助HSD采纳,获得10
15秒前
15秒前
Dasiliy完成签到,获得积分10
15秒前
桐桐应助叁金采纳,获得30
16秒前
16秒前
领导范儿应助啦啦啦采纳,获得10
16秒前
汉堡包应助明理乐珍采纳,获得20
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061