Portfolio Optimization Based on Almost Second-Degree Stochastic Dominance

随机优势 学位(音乐) 文件夹 投资组合优化 随机优化 优势(遗传学) 数学 数学优化 数理经济学 经济 计量经济学 金融经济学 生物 物理 生物化学 声学 基因
作者
Chunling Luo,Piao Chen,Patrick Jaillet
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01092
摘要

In portfolio optimization, the computational complexity of implementing almost stochastic dominance has limited its practical applications. In this study, we introduce an optimization framework aimed at identifying the optimal portfolio that outperforms a specified benchmark under almost second-degree stochastic dominance (ASSD). Our approach involves discretizing the return range and establishing both sufficient and necessary conditions for ASSD. We then propose a three-step iterative procedure: first, identifying a candidate portfolio; second, assessing its optimality; and third, refining the discretization scheme. Theoretical analysis guarantees that the portfolio identified through this iterative process improves with each iteration, ultimately converging to the optimal solution. Our empirical study, utilizing industry portfolios, demonstrates the efficacy of our approach by consistently identifying an optimal portfolio within a few iterations. Furthermore, comparative analysis against other decision criteria, such as mean-variance, second-degree stochastic dominance, and third-degree stochastic dominance, reveals that ASSD generally leads to portfolios with higher out-of-sample average excess returns but also entails increased variations and risks. This paper was accepted by Agostino Capponi, finance. Funding: C. Luo acknowledges financial support from the National Natural Science Foundation of China [Grant 72101070] and the Zhejiang Provincial Natural Science Foundation of China [Grant LY23G010001]. P. Chen acknowledges financial support from the National Natural Science Foundation of China [Grant 72401253]. P. Jaillet acknowledges financial support from the Office of Naval Research [Grant N00014-18-1-2122 and N00014-24-1-2470] and the Air Force Office of Scientific Research [Grant FA9550-23-1-0182 and Grant FA9550-23-1-0190]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.01092 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺其自然完成签到,获得积分10
1秒前
罗健完成签到 ,获得积分10
1秒前
4秒前
曲奇不甜完成签到 ,获得积分10
5秒前
judy发布了新的文献求助10
5秒前
5秒前
7秒前
8秒前
士艳完成签到,获得积分10
8秒前
song发布了新的文献求助30
10秒前
Aurora完成签到,获得积分10
13秒前
上进生发布了新的文献求助10
13秒前
zho应助joy001采纳,获得10
15秒前
hh完成签到,获得积分10
17秒前
20秒前
寒冷荧荧应助BBking采纳,获得10
23秒前
Hello应助起名字好难采纳,获得10
24秒前
CipherSage应助莉亚采纳,获得30
24秒前
25秒前
范月月完成签到 ,获得积分10
25秒前
婷婷应助11采纳,获得10
25秒前
25秒前
康琦琦完成签到 ,获得积分10
26秒前
月弯弯发布了新的文献求助10
26秒前
28秒前
28秒前
上官若男应助哇卡哇卡采纳,获得10
29秒前
32秒前
33秒前
纯真橘子发布了新的文献求助30
33秒前
莉亚完成签到,获得积分10
33秒前
33秒前
34秒前
壮观的涵柏完成签到 ,获得积分10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
酷波er应助科研通管家采纳,获得10
35秒前
云瑾应助科研通管家采纳,获得10
35秒前
pluto应助科研通管家采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
35秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234