已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based radiomics prognostic model for patients with proximal esophageal cancer after definitive chemoradiotherapy

无线电技术 列线图 医学 食管癌 接收机工作特性 神经组阅片室 肿瘤科 放射科 内科学 癌症 神经学 精神科
作者
Linrui Li,Zhihui Qin,Juan Bo,Jiaru Hu,Yuxin Zhang,Liting Qian,Jiangning Dong
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01853-y
摘要

Abstract Objectives To explore the role of radiomics in predicting the prognosis of proximal esophageal cancer and to investigate the biological underpinning of radiomics in identifying different prognoses. Methods A total of 170 patients with pathologically and endoscopically confirmed proximal esophageal cancer from two centers were enrolled. Radiomics models were established by five machine learning approaches. The optimal radiomics model was selected using receiver operating curve analysis. Bioinformatics methods were applied to explore the potential biological mechanisms. Nomograms based on radiomics and clinical–radiomics features were constructed and assessed by receiver operating characteristics, calibration, and decision curve analyses net reclassification improvement, and integrated discrimination improvement evaluations. Results The peritumoral models performed well with the majority of classifiers in the training and validation sets, with the dual-region radiomics model showing the highest integrated area under the curve values of 0.9763 and 0.9471, respectively, and outperforming the single-region models. The clinical–radiomics nomogram showed better predictive performance than the clinical nomogram, with a net reclassification improvement of 34.4% ( p = 0.02) and integrated discrimination improvement of 10% ( p = 0.007). Gene ontology enrichment analysis revealed that lipid metabolism-related functions are potentially crucial in the process by which the radiomics score could stratify patients. Conclusions A combination of peritumoral radiomics features could improve the predictive performance of intratumoral radiomics to estimate overall survival after definitive chemoradiotherapy in patients with proximal esophageal cancer. Radiomics features could provide insights into the lipid metabolism associated with radioresistance and hold great potential to guide personalized care. Critical relevance statement This study demonstrates that incorporating peritumoral radiomics features enhances the predictive accuracy of overall survival in proximal esophageal cancer patients after chemoradiotherapy, and suggests a link between radiomics and lipid metabolism in radioresistance, highlighting its potential for personalized treatment strategies. Key Points Peritumoral region radiomics features could predict the prognosis of proximal esophageal cancer. Dual-region radiomics features showed significantly better predictive performance. Radiomics features can provide insights into the lipid metabolism associated with radioresistance. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wentao发布了新的文献求助10
2秒前
Dragonfln完成签到,获得积分10
2秒前
Elaine完成签到,获得积分10
3秒前
所所应助无辜的山柳采纳,获得10
4秒前
Eric发布了新的文献求助10
5秒前
5秒前
水三寿完成签到,获得积分10
6秒前
赘婿应助可乐采纳,获得10
7秒前
8秒前
科研通AI2S应助LAN采纳,获得10
10秒前
11秒前
单薄水星发布了新的文献求助10
12秒前
14秒前
16秒前
黄嘉慧完成签到 ,获得积分10
16秒前
17秒前
映泧完成签到,获得积分20
17秒前
heyunhua23完成签到,获得积分10
18秒前
21秒前
21秒前
22秒前
楚昕越发布了新的文献求助10
22秒前
lyw完成签到,获得积分10
22秒前
Jane完成签到,获得积分20
22秒前
bkagyin应助ohhh采纳,获得10
23秒前
qingshan完成签到,获得积分10
25秒前
深情安青应助雪无痕3074采纳,获得10
25秒前
ngz完成签到,获得积分10
26秒前
搜集达人应助叶颤采纳,获得10
26秒前
杳鸢应助映泧采纳,获得10
27秒前
领导范儿应助栗子采纳,获得10
27秒前
生动映波发布了新的文献求助10
27秒前
34秒前
李健的小迷弟应助ngz采纳,获得10
35秒前
科目三应助虚幻又莲采纳,获得10
37秒前
痴情的明辉完成签到 ,获得积分10
38秒前
38秒前
cc发布了新的文献求助10
39秒前
Hello应助丁梦阳采纳,获得10
40秒前
41秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219496
求助须知:如何正确求助?哪些是违规求助? 2868323
关于积分的说明 8160534
捐赠科研通 2535378
什么是DOI,文献DOI怎么找? 1367766
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618424