Machine learning-based radiomics prognostic model for patients with proximal esophageal cancer after definitive chemoradiotherapy

无线电技术 列线图 医学 食管癌 接收机工作特性 神经组阅片室 肿瘤科 放射科 内科学 癌症 神经学 精神科
作者
Linrui Li,Zhihui Qin,Juan Bo,Jiaru Hu,Yuxin Zhang,Liting Qian,Jiangning Dong
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01853-y
摘要

Abstract Objectives To explore the role of radiomics in predicting the prognosis of proximal esophageal cancer and to investigate the biological underpinning of radiomics in identifying different prognoses. Methods A total of 170 patients with pathologically and endoscopically confirmed proximal esophageal cancer from two centers were enrolled. Radiomics models were established by five machine learning approaches. The optimal radiomics model was selected using receiver operating curve analysis. Bioinformatics methods were applied to explore the potential biological mechanisms. Nomograms based on radiomics and clinical–radiomics features were constructed and assessed by receiver operating characteristics, calibration, and decision curve analyses net reclassification improvement, and integrated discrimination improvement evaluations. Results The peritumoral models performed well with the majority of classifiers in the training and validation sets, with the dual-region radiomics model showing the highest integrated area under the curve values of 0.9763 and 0.9471, respectively, and outperforming the single-region models. The clinical–radiomics nomogram showed better predictive performance than the clinical nomogram, with a net reclassification improvement of 34.4% ( p = 0.02) and integrated discrimination improvement of 10% ( p = 0.007). Gene ontology enrichment analysis revealed that lipid metabolism-related functions are potentially crucial in the process by which the radiomics score could stratify patients. Conclusions A combination of peritumoral radiomics features could improve the predictive performance of intratumoral radiomics to estimate overall survival after definitive chemoradiotherapy in patients with proximal esophageal cancer. Radiomics features could provide insights into the lipid metabolism associated with radioresistance and hold great potential to guide personalized care. Critical relevance statement This study demonstrates that incorporating peritumoral radiomics features enhances the predictive accuracy of overall survival in proximal esophageal cancer patients after chemoradiotherapy, and suggests a link between radiomics and lipid metabolism in radioresistance, highlighting its potential for personalized treatment strategies. Key Points Peritumoral region radiomics features could predict the prognosis of proximal esophageal cancer. Dual-region radiomics features showed significantly better predictive performance. Radiomics features can provide insights into the lipid metabolism associated with radioresistance. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
鹿小新完成签到 ,获得积分0
2秒前
3秒前
高兴的大米完成签到,获得积分10
3秒前
郭丽莹发布了新的文献求助30
5秒前
7秒前
always发布了新的文献求助30
8秒前
qiuqiu0999完成签到,获得积分10
8秒前
505完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
钮钴禄鬼鬼完成签到 ,获得积分10
11秒前
11秒前
Criminology34应助无语的成仁采纳,获得10
12秒前
Criminology34应助无语的成仁采纳,获得10
12秒前
linn发布了新的文献求助10
12秒前
Feng5945发布了新的文献求助10
13秒前
千羽完成签到,获得积分10
13秒前
三三得九完成签到 ,获得积分10
13秒前
14秒前
科研通AI6.1应助明理听云采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
always完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
汉堡包应助111采纳,获得10
21秒前
22秒前
qiuqiu0999发布了新的文献求助10
23秒前
星辰大海应助随机采纳,获得10
23秒前
23秒前
大气的冷亦完成签到,获得积分10
24秒前
脑洞疼应助Feng5945采纳,获得10
26秒前
log完成签到,获得积分10
26秒前
郭丽莹完成签到,获得积分10
27秒前
义气恋风完成签到,获得积分20
29秒前
29秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240