A Novel Approach to Optimize Key Limitations of Azure Kinect DK for Efficient and Precise Leaf Area Measurement

RGB颜色模型 人工智能 计算机科学 像素 计算机视觉 修补 编码器 图像(数学) 操作系统
作者
Ziang Niu,Ting Huang,Chengjia Xu,Xin-Yue Sun,Mohamed Farag Taha,Yong He,Zhengjun Qiu
出处
期刊:Agriculture [MDPI AG]
卷期号:15 (2): 173-173
标识
DOI:10.3390/agriculture15020173
摘要

Maize leaf area offers valuable insights into physiological processes, playing a critical role in breeding and guiding agricultural practices. The Azure Kinect DK possesses the real-time capability to capture and analyze the spatial structural features of crops. However, its further application in maize leaf area measurement is constrained by RGB–depth misalignment and limited sensitivity to detailed organ-level features. This study proposed a novel approach to address and optimize the limitations of the Azure Kinect DK through the multimodal coupling of RGB-D data for enhanced organ-level crop phenotyping. To correct RGB–depth misalignment, a unified recalibration method was developed to ensure accurate alignment between RGB and depth data. Furthermore, a semantic information-guided depth inpainting method was proposed, designed to repair void and flying pixels commonly observed in Azure Kinect DK outputs. The semantic information was extracted using a joint YOLOv11-SAM2 model, which utilizes supervised object recognition prompts and advanced visual large models to achieve precise RGB image semantic parsing with minimal manual input. An efficient pixel filter-based depth inpainting algorithm was then designed to inpaint void and flying pixels and restore consistent, high-confidence depth values within semantic regions. A validation of this approach through leaf area measurements in practical maize field applications—challenged by a limited workspace, constrained viewpoints, and environmental variability—demonstrated near-laboratory precision, achieving an MAPE of 6.549%, RMSE of 4.114 cm², MAE of 2.980 cm², and R² of 0.976 across 60 maize leaf samples. By focusing processing efforts on the image level rather than directly on 3D point clouds, this approach markedly enhanced both efficiency and accuracy with the sufficient utilization of the Azure Kinect DK, making it a promising solution for high-throughput 3D crop phenotyping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助叶祥采纳,获得10
1秒前
苹果小虾米完成签到 ,获得积分10
1秒前
1秒前
单薄的嵩完成签到,获得积分10
1秒前
lili完成签到,获得积分10
3秒前
最最可爱发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
彭于晏应助星期八采纳,获得10
5秒前
Orange应助holo采纳,获得10
5秒前
xx完成签到,获得积分10
5秒前
传奇3应助过儿采纳,获得10
6秒前
博利发布了新的文献求助10
6秒前
7秒前
赵鹏翔发布了新的文献求助10
7秒前
幸福大白发布了新的文献求助10
7秒前
豆沙包789完成签到 ,获得积分10
7秒前
优秀如雪完成签到,获得积分10
8秒前
LIU发布了新的文献求助30
8秒前
曙光发布了新的文献求助10
9秒前
毛毛发布了新的文献求助10
9秒前
啵啵只因发布了新的文献求助10
9秒前
平淡又柔发布了新的文献求助10
10秒前
最最可爱完成签到,获得积分10
11秒前
orixero应助雨碎寒江采纳,获得10
11秒前
zhijiegao完成签到,获得积分10
13秒前
北冥有鱼完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
大模型应助赵鹏翔采纳,获得10
16秒前
Elton发布了新的文献求助10
16秒前
勤劳飞松完成签到,获得积分10
17秒前
bkagyin应助感性的送终采纳,获得20
17秒前
17秒前
星期八发布了新的文献求助10
18秒前
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148