析氧
分解水
材料科学
化学工程
无定形固体
电解水
电催化剂
电解
电化学
催化作用
碱性水电解
纳米技术
电极
化学
物理化学
结晶学
工程类
电解质
生物化学
光催化
作者
Huan Xu,Xiao Wei Sun,Lingtong Ding,Jingjing Liu,Dan Zhang,Minmin Liu,Xiao Wang,Qixian Zhang,Jiujun Zhang
出处
期刊:Small
[Wiley]
日期:2024-11-06
标识
DOI:10.1002/smll.202406071
摘要
Abstract Electrochemical water‐electrolysis for hydrogen generation often requires more energy due to the sluggish oxygen evolution reaction (OER). This work introduces a double‐layered nanoflower catalyst, NiFe‐LDH@S‐NiFeO x /NF, featuring a crystalline NiFe‐LDH coating on amorphous S‐NiFeO x on nickel foam. Strategically integrating a crystalline‐amorphous (c‐a) heterostructure leverages strain engineering to enhance OER activity with low overpotentials ( η 100 = 220 and η 500 = 245 mV) and stability (135 h at η 100 and 80 h at η 500 ). Theoretical density functional theory (DFT) calculations reveal that the compressive strain can optimize the adsorption of oxygen‐containing intermediates to reduce the reaction energy barrier, thus improving the reaction kinetics and performance of OER. Moreover, its phosphated derivative, NiFeP@S‐NiFeO x /NF, exhibits high hydrogen evolution reaction (HER) performance ( η 10 = 64 mV, η 100 = 187 mV). An alkaline water‐electrolysis cell of NiFeP@S‐NiFeO x /NF(−)||NiFe‐LDH@S‐NiFeO x /NF(+) requires only a cell voltage of 1.77 V at 100 mA cm −2 , demonstrating excellent stability over 110 h (at both 10 and 100 mA cm −2 ). This work highlights the benefits of integrating crystal‐amorphous interfaces and strain effects, offering insights into the understanding and optimizing catalytic OER mechanism and advancing water‐electrolysis technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI