🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新

Favoring the Originally Unfavored Oxygen for Enhancing Nitrogen-to-Nitrate Electroconversion

硝酸盐 氧气 氮气 环境化学 化学 环境科学 有机化学
作者
Xin Li,Michael K.H. Leung
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (56): 3766-3766
标识
DOI:10.1149/ma2024-02563766mtgabs
摘要

Nitrate (NO 3 − ), one of the most crucial forms of reactive nitrogen, is widely used in industry and agriculture. Currently, NO 3 − is manufactured predominantly via a two-step procedure, including the Haber–Bosch process for ammonia synthesis and the Ostwald process for ammonia oxidation. However,both techniques require high-pressure and high-temperature reaction conditions (Haber–Bosch reaction at 150-200 bar and 400-500 ℃; Ostwald reaction at 4-10 bar and 800-1000 ℃), which consumes 1-2% of world energy and releases 1-2% of CO 2 . In addition, due to the complexity of the Ostwald and Haber-Bosch processes, it is only economical at large scales, leading to centralized production, which situation is poorly matched with the distributed nature of HNO 3 utilization. Therefore, bypassing the ammonia route and developing a direct and sustainable approach for NO 3 − synthesis is highly desirable. Electrochemical synthesis of chemicals has been regarded as an attractive alternative to traditional thermochemical methods since electric potential can replace high temperature and pressure in electrochemical reactions as the thermodynamic driving force. Therefore, direct electrochemical oxidation of molecular nitrogen appears to be a potential approach for NO 3 − synthesis,which could be sustainable, modular and easily integrated with intermittent renewable electricity. However, due to the lack of natural catalysts as a reference, the nitrogen oxidation reaction (NOR) still needs to be explored despite its enormous practical value as a replacement for the fossil fuel-driven two-step nitrate preparation approach. To date, only a few works have reported nitrate's electrosynthesis from nitrogen, and the proposed electrocatalysts can only achieve limited NOR activity and selectively due to the complex reaction networks which involve multi-electron transfers, multi-bond breaking and formation steps. In addition, oxidation evolution reaction (OER) as a competitive reaction further limits the selectivity toward nitrate synthesis. One major challenge in improving electrochemical NOR is that its reaction pathways and reactivity are highly sensitive to the catalyst-active-site identity and the non-catalyst components at the electrode/electrolyte interface, such as the local reaction environment. Even minor changes at the catalyst-reaction environment interface can significantly impact the overall catalytic performance.However, the previous works generally regarded the catalyst and reaction environment as two independent systems despite their dynamic interaction throughout the electrochemical reaction 20 . For example, most works improve NOR performance only by designing the morphologies, chemical states, and compositions of the catalysts. To date, a comprehensive design on the interplays between the above catalyst–reaction environment and the NOR performance is absent, which motivates us to employ a synergistic strategy to regulate both catalyst and reaction environment to achieve the overall optimization of the electrocatalytic interface from the microstructure to the macrosystem, thereby achieving the improvement of NOR performance. Here, we propose that the intrinsic property of the catalyst structure and its reaction environment can be considered as gradient interfaces, ranging from microstructure to macroenvironment, to achieve the effect of one plus one greater than two in terms of NOR performance. Specifically, we synthesized Ru nanoclusters confined within the lattice of TiO 2 (RuNC@TiO 2 ) as a microstructural interface and created a macro-interface environment through which we synergistically achieved exceptional NOR performance. The introduced TiO 2 , an oxophilic species with strong OH ad adsorption capability, inhibits OER on Ru active sites by competitively adsorbing OH ad between Ru and TiO 2 . Consequently, the OER on Ru clusters is effectively suppressed due to the preferential adsorption of OH ad on TiO 2 . Importantly, we propose leveraging a macro-interface environment by utilizing the previously considered unfavored oxygen from OER, successfully enhancing the NOR via Le Chatelier's principle. As an experimental demonstration, the as-prepared RuNC@TiO 2 delivered a record-high nitrate yield rate of 26.80 μg h -1 cm -2 (20.54 mol h -1 g Ru -1 ) and a Faradaic efficiency of 35.52 % under simulated conditions with high-concentration oxygen (8 atm air). In addition, an increasing nitrate yield rate and Faradaic efficiency (38.87%) after a continuous 20-hour electrochemical process was found due to the increasing oxygen concentration in the reaction environment caused by the OER. Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月27日)
1#597 nozero
228
3690
2#379 科研小民工
133
2460
3#356 SYLH
177
1790
4#351 shinysparrow
146
2050
5#320 xjcy
160
1600
6#304 天才小能喵
146
1580
7#129 小透明
58
710
8#115 36456657
56
590
9#95 昏睡的蟠桃
26
690
10#87 子车茗
39
480
11#76 迟大猫
38
380
12#76 1+1
38
380
13#74 小鸭子
37
370
14#72 从容的惋庭
36
360
15#71 浦肯野
27
440
16#62 彭于彦祖
15
470
17#54 默默地读文献
27
270
18#50 cdercder
25
250
19#44 不懈奋进
18
260
20#42 8R60d8
21
210
21#42 curtisness
21
210
22#41 pcr163
8
330
23#41 cccx
20
210
24#38 实验好难
19
190
25#36 从容芮
16
200
26#36 Singularity
18
180
27#34 Auston_zhong
17
170
28#34 VDC
13
210
29#34 CAOHOU
17
170
30#34 黄bb
16
180
31#32 小园爱吃肉
16
160
32#32 sun
16
160
第1名:50元;第2名:30元;第3名:10元

总排名
1#4898 nozero
1882
30160
2#3464 科研小民工
1266
21980
3#3448 SYLH
1722
17260
4#3422 shinysparrow
1519
19030
5#2531 xjcy
1260
12710
6#1704 小透明
723
9810
7#816 天才小能喵
387
4290
8#751 浦肯野
322
4290
9#687 CAOHOU
341
3460
10#674 36456657
327
3470
11#621 昏睡的蟠桃
210
4110
12#618 毛豆
307
3110
13#528 S77
264
2640
14#525 子车茗
249
2760
15#514 从容芮
209
3050
16#508 迟大猫
254
2540
17#446 cdercder
171
2750
18#380 curtisness
186
1940
19#342 Catalina_S
168
1740
20#335 劲秉
129
2060
21#325 我是站长才怪
160
1650
22#308 史小菜
136
1720
23#308 研友_Z30GJ8
153
1550
24#274 点着太阳的人
98
1760
25#250 QOP
124
1260
26#226 HEIKU
113
1130
27#222 Leon
110
1120
28#220 加菲丰丰
110
1100
29#220 不懈奋进
101
1190
30#214 火星上的菲鹰
103
1110
31#212 Auston_zhong
106
1060
32#206 贰鸟
97
1090
33#202 实验好难
92
1100
34#201 suibianba
98
1030
35#196 zho
98
980
36#190 幽默的溪灵
95
950
37#186 muxiangrong
74
1120
38#184 whisper
92
920
39#183 彭于彦祖
66
1170
40#180 8R60d8
90
900
41#174 木头马尾
87
870
42#172 VDC
57
1150
43#166 Leif
83
830
44#166 遇上就这样吧
78
880
45#164 杳鸢
82
820
46#144 sakurai
66
780
47#144 tuanheqi
20
1240
48#140 聪明钢铁侠
67
730
49#140 斯文的寒风
70
700
50#138 Agernon
69
690
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
程程发布了新的文献求助10
1秒前
WYF发布了新的文献求助10
1秒前
李健应助Perrylin718采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
嘿嘿江发布了新的文献求助10
5秒前
司空豁发布了新的文献求助10
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
111发布了新的文献求助10
8秒前
陈洋_复旦大学完成签到,获得积分10
9秒前
CodeCraft应助鲁涔采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
javaxixi发布了新的文献求助10
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
ff完成签到,获得积分10
15秒前
wanci应助彩虹屁篓子采纳,获得30
15秒前
细心健柏完成签到 ,获得积分10
16秒前
慕青应助马里奥好难采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
双楠应助lcs采纳,获得10
18秒前
Satellites完成签到,获得积分10
18秒前
阿锋发布了新的文献求助30
19秒前
华仔应助辛勤太阳采纳,获得10
20秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
烟花应助javaxixi采纳,获得10
23秒前
24秒前
WYF完成签到,获得积分10
24秒前
科研小民工应助Traveller采纳,获得10
25秒前
量子星尘发布了新的文献求助10
27秒前
CJ发布了新的文献求助10
27秒前
28秒前
沉默的八宝粥完成签到 ,获得积分10
29秒前
白糖发布了新的文献求助10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 3000
Production Logging: Theoretical and Interpretive Elements 2700
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Continuum Thermodynamics and Material Modelling 2000
Conference Record, IAS Annual Meeting 1977 1250
British Girl Chinese Wife (New World Press, 1985) 800
Scale-up of mixotrophic cultivation with Galdieria sulphuraria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 冶金 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3634491
求助须知:如何正确求助?哪些是违规求助? 3202390
关于积分的说明 9658455
捐赠科研通 2908391
什么是DOI,文献DOI怎么找? 1592853
邀请新用户注册赠送积分活动 749721
科研通“疑难数据库(出版商)”最低求助积分说明 730711