已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Favoring the Originally Unfavored Oxygen for Enhancing Nitrogen-to-Nitrate Electroconversion

硝酸盐 氧气 氮气 环境化学 化学 环境科学 有机化学
作者
Xin Li,Michael K.H. Leung
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (56): 3766-3766
标识
DOI:10.1149/ma2024-02563766mtgabs
摘要

Nitrate (NO 3 − ), one of the most crucial forms of reactive nitrogen, is widely used in industry and agriculture. Currently, NO 3 − is manufactured predominantly via a two-step procedure, including the Haber–Bosch process for ammonia synthesis and the Ostwald process for ammonia oxidation. However,both techniques require high-pressure and high-temperature reaction conditions (Haber–Bosch reaction at 150-200 bar and 400-500 ℃; Ostwald reaction at 4-10 bar and 800-1000 ℃), which consumes 1-2% of world energy and releases 1-2% of CO 2 . In addition, due to the complexity of the Ostwald and Haber-Bosch processes, it is only economical at large scales, leading to centralized production, which situation is poorly matched with the distributed nature of HNO 3 utilization. Therefore, bypassing the ammonia route and developing a direct and sustainable approach for NO 3 − synthesis is highly desirable. Electrochemical synthesis of chemicals has been regarded as an attractive alternative to traditional thermochemical methods since electric potential can replace high temperature and pressure in electrochemical reactions as the thermodynamic driving force. Therefore, direct electrochemical oxidation of molecular nitrogen appears to be a potential approach for NO 3 − synthesis,which could be sustainable, modular and easily integrated with intermittent renewable electricity. However, due to the lack of natural catalysts as a reference, the nitrogen oxidation reaction (NOR) still needs to be explored despite its enormous practical value as a replacement for the fossil fuel-driven two-step nitrate preparation approach. To date, only a few works have reported nitrate's electrosynthesis from nitrogen, and the proposed electrocatalysts can only achieve limited NOR activity and selectively due to the complex reaction networks which involve multi-electron transfers, multi-bond breaking and formation steps. In addition, oxidation evolution reaction (OER) as a competitive reaction further limits the selectivity toward nitrate synthesis. One major challenge in improving electrochemical NOR is that its reaction pathways and reactivity are highly sensitive to the catalyst-active-site identity and the non-catalyst components at the electrode/electrolyte interface, such as the local reaction environment. Even minor changes at the catalyst-reaction environment interface can significantly impact the overall catalytic performance.However, the previous works generally regarded the catalyst and reaction environment as two independent systems despite their dynamic interaction throughout the electrochemical reaction 20 . For example, most works improve NOR performance only by designing the morphologies, chemical states, and compositions of the catalysts. To date, a comprehensive design on the interplays between the above catalyst–reaction environment and the NOR performance is absent, which motivates us to employ a synergistic strategy to regulate both catalyst and reaction environment to achieve the overall optimization of the electrocatalytic interface from the microstructure to the macrosystem, thereby achieving the improvement of NOR performance. Here, we propose that the intrinsic property of the catalyst structure and its reaction environment can be considered as gradient interfaces, ranging from microstructure to macroenvironment, to achieve the effect of one plus one greater than two in terms of NOR performance. Specifically, we synthesized Ru nanoclusters confined within the lattice of TiO 2 (RuNC@TiO 2 ) as a microstructural interface and created a macro-interface environment through which we synergistically achieved exceptional NOR performance. The introduced TiO 2 , an oxophilic species with strong OH ad adsorption capability, inhibits OER on Ru active sites by competitively adsorbing OH ad between Ru and TiO 2 . Consequently, the OER on Ru clusters is effectively suppressed due to the preferential adsorption of OH ad on TiO 2 . Importantly, we propose leveraging a macro-interface environment by utilizing the previously considered unfavored oxygen from OER, successfully enhancing the NOR via Le Chatelier's principle. As an experimental demonstration, the as-prepared RuNC@TiO 2 delivered a record-high nitrate yield rate of 26.80 μg h -1 cm -2 (20.54 mol h -1 g Ru -1 ) and a Faradaic efficiency of 35.52 % under simulated conditions with high-concentration oxygen (8 atm air). In addition, an increasing nitrate yield rate and Faradaic efficiency (38.87%) after a continuous 20-hour electrochemical process was found due to the increasing oxygen concentration in the reaction environment caused by the OER. Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tzy发布了新的文献求助10
1秒前
1秒前
Cristina2024完成签到,获得积分10
4秒前
天天快乐应助anna采纳,获得10
4秒前
壮观复天完成签到 ,获得积分10
5秒前
6秒前
6秒前
浮游应助laura采纳,获得10
7秒前
8秒前
丁鹏笑完成签到 ,获得积分0
9秒前
12秒前
不知名的呆毛完成签到,获得积分10
13秒前
隐形曼青应助快乐乐松采纳,获得10
14秒前
归尘发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
11发布了新的文献求助30
18秒前
辣辣辣发布了新的文献求助10
18秒前
隐形曼青应助啊啊采纳,获得10
19秒前
20秒前
lorenz发布了新的文献求助10
21秒前
22秒前
张董事长完成签到 ,获得积分10
24秒前
fjn完成签到 ,获得积分10
24秒前
25秒前
26秒前
28秒前
123完成签到,获得积分10
28秒前
29秒前
略略略完成签到,获得积分10
29秒前
辣辣完成签到 ,获得积分10
30秒前
安详的嵩完成签到 ,获得积分10
30秒前
31秒前
风清扬发布了新的文献求助10
32秒前
32秒前
33秒前
fjn发布了新的文献求助10
34秒前
爆米花应助wangyanling采纳,获得10
34秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557505
关于积分的说明 14263900
捐赠科研通 4480602
什么是DOI,文献DOI怎么找? 2454498
邀请新用户注册赠送积分活动 1445221
关于科研通互助平台的介绍 1421016