已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Favoring the Originally Unfavored Oxygen for Enhancing Nitrogen-to-Nitrate Electroconversion

硝酸盐 氧气 氮气 环境化学 化学 环境科学 有机化学
作者
Xin Li,Michael K.H. Leung
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (56): 3766-3766
标识
DOI:10.1149/ma2024-02563766mtgabs
摘要

Nitrate (NO 3 − ), one of the most crucial forms of reactive nitrogen, is widely used in industry and agriculture. Currently, NO 3 − is manufactured predominantly via a two-step procedure, including the Haber–Bosch process for ammonia synthesis and the Ostwald process for ammonia oxidation. However,both techniques require high-pressure and high-temperature reaction conditions (Haber–Bosch reaction at 150-200 bar and 400-500 ℃; Ostwald reaction at 4-10 bar and 800-1000 ℃), which consumes 1-2% of world energy and releases 1-2% of CO 2 . In addition, due to the complexity of the Ostwald and Haber-Bosch processes, it is only economical at large scales, leading to centralized production, which situation is poorly matched with the distributed nature of HNO 3 utilization. Therefore, bypassing the ammonia route and developing a direct and sustainable approach for NO 3 − synthesis is highly desirable. Electrochemical synthesis of chemicals has been regarded as an attractive alternative to traditional thermochemical methods since electric potential can replace high temperature and pressure in electrochemical reactions as the thermodynamic driving force. Therefore, direct electrochemical oxidation of molecular nitrogen appears to be a potential approach for NO 3 − synthesis,which could be sustainable, modular and easily integrated with intermittent renewable electricity. However, due to the lack of natural catalysts as a reference, the nitrogen oxidation reaction (NOR) still needs to be explored despite its enormous practical value as a replacement for the fossil fuel-driven two-step nitrate preparation approach. To date, only a few works have reported nitrate's electrosynthesis from nitrogen, and the proposed electrocatalysts can only achieve limited NOR activity and selectively due to the complex reaction networks which involve multi-electron transfers, multi-bond breaking and formation steps. In addition, oxidation evolution reaction (OER) as a competitive reaction further limits the selectivity toward nitrate synthesis. One major challenge in improving electrochemical NOR is that its reaction pathways and reactivity are highly sensitive to the catalyst-active-site identity and the non-catalyst components at the electrode/electrolyte interface, such as the local reaction environment. Even minor changes at the catalyst-reaction environment interface can significantly impact the overall catalytic performance.However, the previous works generally regarded the catalyst and reaction environment as two independent systems despite their dynamic interaction throughout the electrochemical reaction 20 . For example, most works improve NOR performance only by designing the morphologies, chemical states, and compositions of the catalysts. To date, a comprehensive design on the interplays between the above catalyst–reaction environment and the NOR performance is absent, which motivates us to employ a synergistic strategy to regulate both catalyst and reaction environment to achieve the overall optimization of the electrocatalytic interface from the microstructure to the macrosystem, thereby achieving the improvement of NOR performance. Here, we propose that the intrinsic property of the catalyst structure and its reaction environment can be considered as gradient interfaces, ranging from microstructure to macroenvironment, to achieve the effect of one plus one greater than two in terms of NOR performance. Specifically, we synthesized Ru nanoclusters confined within the lattice of TiO 2 (RuNC@TiO 2 ) as a microstructural interface and created a macro-interface environment through which we synergistically achieved exceptional NOR performance. The introduced TiO 2 , an oxophilic species with strong OH ad adsorption capability, inhibits OER on Ru active sites by competitively adsorbing OH ad between Ru and TiO 2 . Consequently, the OER on Ru clusters is effectively suppressed due to the preferential adsorption of OH ad on TiO 2 . Importantly, we propose leveraging a macro-interface environment by utilizing the previously considered unfavored oxygen from OER, successfully enhancing the NOR via Le Chatelier's principle. As an experimental demonstration, the as-prepared RuNC@TiO 2 delivered a record-high nitrate yield rate of 26.80 μg h -1 cm -2 (20.54 mol h -1 g Ru -1 ) and a Faradaic efficiency of 35.52 % under simulated conditions with high-concentration oxygen (8 atm air). In addition, an increasing nitrate yield rate and Faradaic efficiency (38.87%) after a continuous 20-hour electrochemical process was found due to the increasing oxygen concentration in the reaction environment caused by the OER. Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky完成签到 ,获得积分10
3秒前
hsc大爹完成签到 ,获得积分20
5秒前
Zuix完成签到 ,获得积分10
5秒前
科研通AI5应助sugawife采纳,获得30
5秒前
我爱学习完成签到,获得积分10
5秒前
科研通AI5应助木心采纳,获得10
5秒前
科研通AI6应助响亮的用户G采纳,获得10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
12秒前
12秒前
13秒前
拼搏秋发布了新的文献求助30
13秒前
我是老大应助格物致知采纳,获得10
13秒前
脑洞疼应助自然的茉莉采纳,获得10
13秒前
peter发布了新的文献求助10
13秒前
14秒前
李健应助闫伊森采纳,获得20
14秒前
Lucas应助Www采纳,获得10
16秒前
的剩下的发布了新的文献求助10
16秒前
符昱发布了新的文献求助10
17秒前
华仔应助Cris采纳,获得10
17秒前
hsc大爹关注了科研通微信公众号
21秒前
apple红了完成签到 ,获得积分10
21秒前
雨0926应助drdouxia采纳,获得10
22秒前
黄豆完成签到,获得积分10
24秒前
快乐咖啡完成签到,获得积分10
26秒前
科目三应助dawn采纳,获得10
26秒前
26秒前
SciGPT应助goodgoodstudy采纳,获得10
27秒前
reflux发布了新的文献求助10
28秒前
28秒前
SciGPT应助wh采纳,获得30
29秒前
李黑黑完成签到,获得积分10
29秒前
大晟归来发布了新的文献求助30
31秒前
32秒前
Cliff0618完成签到,获得积分20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006096
求助须知:如何正确求助?哪些是违规求助? 4249582
关于积分的说明 13241321
捐赠科研通 4049362
什么是DOI,文献DOI怎么找? 2215311
邀请新用户注册赠送积分活动 1225193
关于科研通互助平台的介绍 1145816