亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low-density lipoprotein cholesterol predicts coronary artery calcification events in patients with type 2 diabetes: a longitudinal study

医学 内科学 糖尿病 2型糖尿病 心脏病学 胆固醇 钙化 冠状动脉疾病 内分泌学
作者
Zhiyong Zou,Yongbing Sun,Lijun Zou,Yang Zhou,Xinbei Lin,Jing Zhou,Zhonglin Li,Xiao-Ling Wu,Ling Wang,Xiaodong Li,Yong Wang,Yangxi Hu,Fengli Li,Jiancheng Zhang,Yongli Li
出处
期刊:Diabetology & Metabolic Syndrome [Springer Nature]
卷期号:17 (1)
标识
DOI:10.1186/s13098-025-01625-8
摘要

Coronary Artery Calcification (CAC) is a major risk factor for various cardiovascular diseases. Low-Density Lipoprotein Cholesterol (LDL-C) is a significant factor in atherosclerotic cardiovascular diseases and is usually elevated in patients with Type 2 Diabetes Mellitus (T2DM). However, the association between LDL-C levels and incident CAC in asymptomatic T2DM patients remains unclear. This study is a single-center retrospective cohort study conducted from January 2018 to December 2023, including 2,631 asymptomatic T2DM patients who underwent regular health screenings. All participants were confirmed to be free of CAC at baseline by computed tomography (CT). Based on baseline LDL-C levels, participants were divided into three groups (T1: 0.66–2.43 mmol/L; T2: 2.44–3.18 mmol/L; T3: 3.19–7.21 mmol/L). The follow-up endpoint was the occurrence of incident CAC, with a total follow-up period of 72 months. Kaplan-Meier survival curves were used for analysis, followed by log-rank tests. Univariate and multivariate Cox proportional hazards regression models were employed to investigate the relationship between LDL-C and incident CAC, and subgroup analysis was performed to test the robustness of the LDL-C and CAC relationship. During a median follow-up period of 29.9 months, 885 (33.64%) participants developed incident CAC occurred. The cumulative incidence of incident CAC increased progressively with higher LDL-C levels (log-rank test, P < 0.001). After adjusting for confounding factors, multivariable Cox proportional hazards regression results showed a significant association between LDL-C and incident CAC (hazard ratio [HR], 1.77; 95% confidence interval [CI], 1.64–1.92). When LDL-C was treated as a categorical variable, elevated levels in T2 (adjusted HR, 1.62; 95% CI, 1.36–1.93; P < 0.001) and T3 (adjusted HR, 3.38; 95% CI, 2.84–4.03; P < 0.001) were significantly associated with the risk of incident CAC. Additionally, subgroup analysis demonstrated a consistent association between LDL-C and incident CAC. High LDL-C levels are associated with incident CAC in asymptomatic T2DM patients, suggesting that LDL-C may be useful for risk stratification in this population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumumuzzz完成签到,获得积分10
24秒前
lcwait完成签到,获得积分10
24秒前
Wmmmmm发布了新的文献求助10
39秒前
Wmmmmm完成签到,获得积分10
49秒前
白华苍松发布了新的文献求助20
51秒前
上官若男应助读书的时候采纳,获得30
52秒前
Sunsets完成签到 ,获得积分10
57秒前
善学以致用应助白华苍松采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研小和尚完成签到,获得积分10
1分钟前
小红发布了新的文献求助10
1分钟前
小红完成签到,获得积分10
1分钟前
丘比特应助读书的时候采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
JamesPei应助蓝色牛马采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
sunialnd应助科研通管家采纳,获得150
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
2分钟前
蓝色牛马发布了新的文献求助10
2分钟前
万能图书馆应助蓝色牛马采纳,获得10
2分钟前
隐形不凡完成签到,获得积分10
2分钟前
2分钟前
李桂芳完成签到,获得积分10
3分钟前
ChenGY完成签到,获得积分10
3分钟前
3分钟前
HANZHANG应助胡鸽采纳,获得10
3分钟前
af完成签到,获得积分10
3分钟前
Ava应助读书的时候采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
科研通AI6.1应助HANZHANG采纳,获得30
4分钟前
Everything完成签到,获得积分10
4分钟前
4分钟前
Wang完成签到 ,获得积分20
4分钟前
上官若男应助读书的时候采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
星辰大海应助读书的时候采纳,获得10
5分钟前
坦率的文龙完成签到,获得积分10
5分钟前
白华苍松完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739664
求助须知:如何正确求助?哪些是违规求助? 5388233
关于积分的说明 15339861
捐赠科研通 4882052
什么是DOI,文献DOI怎么找? 2624113
邀请新用户注册赠送积分活动 1572832
关于科研通互助平台的介绍 1529616