已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Female perspectives on algorithmic bias: implications for AI researchers and practitioners

授权 不公正 不平等 建设性的 实证研究 人工智能 计算机科学 心理学 社会心理学 政治学 操作系统 数学分析 哲学 认识论 法学 过程(计算) 数学
作者
Belen Fraile-Rojas,Carmen De‐Pablos‐Heredero,Mariano Méndez-Suárez
出处
期刊:Management Decision [Emerald (MCB UP)]
标识
DOI:10.1108/md-04-2024-0884
摘要

Purpose This article explores the use of natural language processing (NLP) techniques and machine learning (ML) models to discover underlying concepts of gender inequality applied to artificial intelligence (AI) technologies in female social media conversations. The first purpose is to characterize female users who use this platform to share content around this area. The second is to identify the most prominent themes among female users’ digital production of gender inequality concepts, applied to AI technologies. Design/methodology/approach Social opinion mining has been applied to historical Twitter data. Data were gathered using a combination of analytical methods such as word clouds, sentiment analyses and clustering. It examines 172,041 tweets worldwide over a limited period of 359 days. Findings Empirical data gathered from interactions of female users in digital dialogues highlight that the most prominent topics of interest are the future of AI technologies and the active role of women to guarantee gender balanced systems. Algorithmic bias impacts female user behaviours in response to injustice and inequality in algorithmic outcomes. They share topics of interest and lead constructive conversations with profiles affiliated with gender or race empowerment associations. Women challenged by stereotypes and prejudices are likely to fund entrepreneurial solutions to create opportunities for change. Research limitations/implications This study does have its limitations, however. First, different keywords are likely to result in a different pool of related research. Moreover, due to the nature of our sample, the largest proportion of posts are from native English speakers, predominantly (88%) from the US, UK, Australia and Canada. This demographic concentration reflects specific social structures and practices that influence gender equity priorities within the sample. These cultural contexts, which often emphasize inclusivity and equity, play a significant role in shaping the discourse around gender issues. These cultural norms, preferences and practices are critical in understanding the individual behaviours, perspectives and priorities expressed in the posts; in other words, it is vital to consider cultural context and economic determinants in an analysis of gender equity discussions. The US, UK, Australia and Canada share a cultural and legal heritage, a common language, values, democracy and the rule of law. Bennett (2007) emphasizes the potential for enhanced cooperation in areas like technology, trade and security, suggesting that the anglosphere’s cultural and institutional commonalities create a natural foundation for a cohesive, influential global network. These shared characteristics further influence the common approaches and perspectives on gender equity in public discourse. Yet findings from Western nations should not be assumed to apply easily to the contexts of other countries. Practical implications From a practical perspective, the results help us understand the role of female influencers and scrutinize public conversations. From a theoretical one, this research upholds the argument that feminist critical thought is indispensable in the development of balanced AI systems. Social implications The results also help us understand the role of female influencers: ordinary individuals often challenged by gender and race discrimination. They request an intersectional, collaborative and pluralistic understanding of gender and race in AI. They act alone and endure the consequences of stigmatized products and services. AI curators should strongly consider advocating for responsible, impartial technologies, recognizing the indispensable role of women. This must consider all stakeholders, including representatives from industry, small and medium-sized enterprises (SMEs), civil society and academia. Originality/value This study aims to fill critical research gaps by addressing the lack of a socio-technical perspective on AI-based decision-making systems, the shortage of empirical studies in the field and the need for a critical analysis using feminist theories. The study offers valuable insights that can guide managerial decision-making for AI researchers and practitioners, providing a comprehensive understanding of the topic through a critical lens.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin完成签到 ,获得积分10
刚刚
想睡觉的小笼包完成签到 ,获得积分10
刚刚
文献嘤发布了新的文献求助10
1秒前
zzz完成签到 ,获得积分10
2秒前
2秒前
科研通AI5应助wxyllxx采纳,获得10
4秒前
4秒前
tanrui发布了新的文献求助10
5秒前
paleo-地质完成签到,获得积分10
5秒前
猪仔5号完成签到 ,获得积分10
6秒前
6秒前
心随以动完成签到 ,获得积分10
6秒前
deswin完成签到 ,获得积分10
6秒前
luster完成签到 ,获得积分10
6秒前
田様应助果子采纳,获得10
7秒前
17852573662完成签到,获得积分10
7秒前
Hy发布了新的文献求助10
7秒前
有虎的柜子完成签到,获得积分10
8秒前
rick3455完成签到 ,获得积分10
8秒前
含糊的笑卉完成签到 ,获得积分10
8秒前
坦率紫烟完成签到,获得积分10
11秒前
General发布了新的文献求助10
11秒前
tanrui完成签到,获得积分10
11秒前
sky发布了新的文献求助10
12秒前
修辛完成签到 ,获得积分10
12秒前
文献嘤完成签到,获得积分10
12秒前
Anna完成签到 ,获得积分10
13秒前
tanhaowen完成签到 ,获得积分10
13秒前
aliu发布了新的文献求助10
14秒前
共享精神应助wang采纳,获得10
14秒前
ffu完成签到 ,获得积分10
14秒前
15秒前
弧光完成签到 ,获得积分10
16秒前
小凯完成签到 ,获得积分10
16秒前
啫啫完成签到 ,获得积分10
17秒前
科研通AI5应助有虎的柜子采纳,获得10
17秒前
17秒前
莎莎来了完成签到,获得积分10
18秒前
小金星星完成签到 ,获得积分10
18秒前
猪瘾犯了发布了新的文献求助20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566470
求助须知:如何正确求助?哪些是违规求助? 3139182
关于积分的说明 9430889
捐赠科研通 2840029
什么是DOI,文献DOI怎么找? 1560936
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717778