Multiple Environmental Variables as Covariates to Improve the Accuracy of Spatial Prediction Models for SOM on Karst Aera

均方误差 随机森林 普通最小二乘法 统计 协变量 克里金 预测建模 Lasso(编程语言) 环境科学 自组织映射 数学 计算机科学 人工智能 聚类分析 万维网
作者
Yun Jiang,Fupeng Li,Yufeng Gong,Xiuyuan Yang,Guiting Mu
出处
期刊:Land Degradation & Development [Wiley]
标识
DOI:10.1002/ldr.5454
摘要

ABSTRACT Aims accurately predicting the spatial distribution of soil organic matter (SOM) is essential for environmental management and carbon storage estimation. However, the diversity of sources of variables poses a challenge in studying the spatial distribution of SOM. Methods in order to address this issue, we propose leveraging multiple environmental variables and employing machine learning models, specifically Lightweight gradient boosting machine learning (LightGBM) and random forest (RF), for predicting SOM spatial distribution. 128 soil samples were collected from the Caohai National Nature Reserve, and their SOM content was measured. Results the study found that the average SOM content was 36.75 g/kg. Compared to traditional linear regression models such as ordinary kriging (OK), ordinary least squares (OLS), and geographically weighted regression (GWR), the machine learning models based on nonlinear regression, LightGBM and RF, demonstrated higher cross‐validated coefficients of determination ( R 2 ) of 0.62 and 0.60, respectively, outperforming the other models. Additionally, RF exhibited lower mean absolute error (MAE) and root mean square error (RMSE), indicating higher stability and generalization capability. The spatial distribution of SOM among the models showed consistency, with higher SOM content observed in southern and near‐Caohai Lake regions and lower SOM content in northern and farther regions from Caohai Lake. Results from the Shapley additive explanations (SHAP) model highlighted agricultural land (AL), pH, and Elevation (ELV) as primary covariates influencing SOM spatial distribution. Conclusions this study provides valuable insights and support for environmental management and carbon storage estimation in the karst plateau region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助YY采纳,获得10
1秒前
Tingtingzhang发布了新的文献求助10
1秒前
xxxxx应助王梓磬采纳,获得20
1秒前
1秒前
3秒前
小小怪发布了新的文献求助10
3秒前
ACTWILD完成签到,获得积分20
3秒前
tll发布了新的文献求助10
4秒前
无所谓完成签到,获得积分10
4秒前
5秒前
zzx发布了新的文献求助10
5秒前
禅依完成签到,获得积分10
5秒前
净净子完成签到,获得积分10
5秒前
科研通AI5应助白张采纳,获得10
7秒前
ybFeng应助小小怪采纳,获得10
7秒前
7秒前
7秒前
Apei发布了新的文献求助10
8秒前
九日发布了新的文献求助10
10秒前
Orange应助proteinpurify采纳,获得10
10秒前
11秒前
11秒前
12秒前
nn发布了新的文献求助10
13秒前
13秒前
wenxiangou完成签到,获得积分20
13秒前
14秒前
情怀应助朱豪豪采纳,获得10
14秒前
15秒前
刘云发布了新的文献求助10
16秒前
大个应助乔治哇采纳,获得10
17秒前
哈哈哈完成签到 ,获得积分10
17秒前
18秒前
liu完成签到,获得积分20
18秒前
一脸茫然发布了新的文献求助10
19秒前
19秒前
21秒前
21秒前
21秒前
persist发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734857
求助须知:如何正确求助?哪些是违规求助? 3278790
关于积分的说明 10011741
捐赠科研通 2995468
什么是DOI,文献DOI怎么找? 1643460
邀请新用户注册赠送积分活动 781216
科研通“疑难数据库(出版商)”最低求助积分说明 749300