Visual Navigation and Crop Mapping of a Phenotyping Robot Mars-Phenobot in Simulation

计算机科学 人工智能 计算机视觉 全球导航卫星系统应用 人口 机器人 全球定位系统 电信 人口学 社会学
作者
Zhengkun Li,Rui Xu,Changying Li,Longsheng Fu
标识
DOI:10.2139/ssrn.5093760
摘要

AbstractCultivating high-yield and high-quality crops is important for addressing the growing demand for food and fiber from an increasing population. In selective breeding programs, autonomous robotic systems have proved to have great potential to replace manual phenotypic trait measurements which are time-consuming and labor-intensive. In this paper, we presented a Robot Operating System (ROS)-based phenotyping robot, MARS-PhenoBot, and demonstrated its visual navigation and field mapping capacities in the Gazebo simulation environment. MARS-PhenoBot was a solar-powered modular platform with a four-wheel steering and four-wheel driving configuration. We developed a navigation strategy that fuses multiple cameras to guide the robot to follow crop rows and transition between them, enabling visual navigation across the entire field without relying on global GNSS signals. Three row-detection algorithms, including thresholding-based, detection-based, and segmentation-based methods, were compared and evaluated in simulated crop fields with discontinuous and continuous crop rows, as well as with and without the presence of weeds. The results demonstrated that the segmentation-based method achieved the lowest average cross-track errors, measuring 2.5 cm for discontinuous scenarios and 0.8 cm for continuous scenarios in row detection. Additionally, a field mapping workflow based on RTAB-MAP (Real-Time Appearance-Based Mapping) and V-SLAM (Visual Simultaneous Localization and Mapping) was developed. The workflow produced the 2D maps identifying crop and weed locations, as well as 3D models represented as point clouds for crop shapes and structures. Using this mapping workflow, the average crop localization error was measured at 6.4 cm, primarily caused by the visual odometry drift. The generated point clouds of crops could support further phenotyping analyses, such as crop height/diameter measurements and leaf counting. The methodology developed in this study could be transferred to real-world robots that are capable of automated robotic phenotyping for in-field crops, providing an effective tool for accelerating selective breeding programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡天萌发布了新的文献求助10
刚刚
Grinder完成签到 ,获得积分10
1秒前
MADKAI发布了新的文献求助20
1秒前
圆滑的铁勺完成签到,获得积分10
2秒前
2秒前
2秒前
zhangting完成签到,获得积分10
3秒前
AAAAAAAAAAA完成签到,获得积分10
3秒前
vvvvvvv完成签到,获得积分10
3秒前
3秒前
wanyanjin应助1111采纳,获得10
3秒前
gaos发布了新的文献求助10
4秒前
小吴完成签到,获得积分10
5秒前
迟大猫应助Star1983采纳,获得10
5秒前
chinning完成签到,获得积分10
6秒前
Mon_zh发布了新的文献求助20
6秒前
6秒前
漂亮送终完成签到,获得积分10
6秒前
朴素篮球发布了新的文献求助10
7秒前
天才完成签到 ,获得积分10
7秒前
不喝可乐发布了新的文献求助10
7秒前
8秒前
皮尤尤发布了新的文献求助10
8秒前
9秒前
道中道完成签到,获得积分10
10秒前
10秒前
知之然完成签到,获得积分10
10秒前
研友_n2QP2L完成签到,获得积分10
10秒前
Lucas应助安静听白采纳,获得10
10秒前
CC发布了新的文献求助10
10秒前
星辰大海应助系统提示采纳,获得10
11秒前
11秒前
sss完成签到,获得积分10
11秒前
11秒前
板凳完成签到,获得积分10
12秒前
单纯访枫发布了新的文献求助30
12秒前
bin0920发布了新的文献求助10
12秒前
aaaaaa完成签到,获得积分10
13秒前
tangsuyun完成签到,获得积分20
13秒前
MADKAI发布了新的文献求助50
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678