免疫印迹
多糖
化学
行为绝望测验
抗抑郁药
药理学
海马体
生物化学
生物
内分泌学
基因
作者
Chenxi Yang,Jiaqi Chen,Jie Tang,Lanzhou Li,Yongfeng Zhang,Yu Li,Chang‐Chun Ruan,Chunyue Wang
出处
期刊:Nutrients
[Multidisciplinary Digital Publishing Institute]
日期:2024-11-04
卷期号:16 (21): 3785-3785
摘要
Background/Objectives: Depression is a prevalent worldwide mental health disorder that inflicts significant harm to individuals and society. Dictyophora duplicata is an edible fungus that contains a variety of nutrients, including polysaccharides. This study aims to investigate the monosaccharide composition and molecular weight of the Dictyophora duplicata polysaccharide (DDP-B1), followed by an exploration of its antidepressant effects in chronic unpredictable mild stress (CUMS) mice. Methods: Dictyophora duplicata was purified using a DEAE-52 column and an S-400 column to obtain DDP-B1. The monosaccharide composition and molecular weight of DDP-B1 were investigated via high-performance gel permeation chromatograph. Six-week-old C57BL/6 male mice were utilized for the CUMS modeling to evaluate the antidepressant efficacy of DDP-B1. Fluoxetine served as the positive control group. The depressive-like behaviors and brain pathology of mice were evaluated. Immunofluorescence (IF) staining, metabolomics analysis, and western blot were employed to further investigate the underlying mechanisms. Results: DDP-B1 significantly alleviated the depression-like behavior of CUMS mice and increased the expression of SYN and PSD-95 in the mice’s brains, which was further validated by western blot. Metabolomics analysis indicated a reduction in serum glutamate in CUMS mice following DDP-B1 treatment. Moreover, DDP-B1 treatment led to an increase in levels of GABAAR, BDNF, p-TrkB and p-p70S6K. Conclusions: DDP-B1 regulated abnormalities in the glutamatergic system, subsequently activated the BDNF-TrkB-mTOR pathway and mitigated the pathological manifestations of CUMS mice. This study validated the potential of DDP-B1 as an antidepressant medication and established a theoretical foundation for the development of fungi with similar properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI