氧化还原
锂(药物)
动力学
硫黄
化学
化学工程
接口(物质)
材料科学
纳米技术
多硫化物
无机化学
电极
吸附
有机化学
物理化学
工程类
电解质
内分泌学
医学
物理
吉布斯等温线
量子力学
作者
Zhibin Cheng,Yiyang Chen,Jie Lian,Xingli Chen,Shengchang Xiang,Banglin Chen,Zhangjing Zhang
标识
DOI:10.1002/ange.202421726
摘要
Modifying the separator is considered as an effective strategy for achieving High performance lithium‐sulfur (Li‐S) batteries. However, most modification layers are excessively thick, with catalytic active sites primarily located within the material's interior. This configuration severely impacts Li+ transport and the efficient catalytic conversion of polysulfides. Therefore, there is an urgent need to develop a multifunctional separator that integrates ultrathin design, catalytic activity, and ion sieving capabilities. Herein, we successfully linked TCPP(Ni) as a secondary ligand with Zr‐BTB nanosheets to create an ultra‐thin separator modification layer (Zr‐TCPP(Ni)) with efficient ion sieving and catalytic properties. The resultant multifunctional separators provide robust ion sieving capabilities that promote rapid Li+ transport and intercept polysulfides shuttling. Therefore, The Zr‐TCPP(Ni)@PP cell maintains 79.45% of its initial capacity after 400 cycles at a high rate of 3 C, while achieving an impressive areal capacity of 4.55 mA h cm‐2 even with high sulfur content of 80 wt% at 0.5 C. This work provides valuable insights for rational design of MOF interface engineering in high energy density Li‐S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI