Study of carrier diffusion in InGaN/GaN quantum wells: Impact of quantum well thickness and substrate type

量子阱 材料科学 光电子学 基质(水族馆) 宽禁带半导体 扩散 凝聚态物理 物理 光学 地质学 热力学 海洋学 激光器
作者
Simon Litschgi,A. Dussaigne,Frédéric Barbier,Guillaume Veux,Anthony Cibié,B. Gayral,Fabian Rol
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:126 (1) 被引量:1
标识
DOI:10.1063/5.0219902
摘要

In InGaN/GaN micro-light-emitting diodes (μLEDs), the size-dependent efficiency loss is commonly attributed to carrier diffusion within quantum wells (QWs). When the μLED size is sufficiently small, carriers can diffuse laterally to reach defective sidewalls, leading to non-radiative recombination. This challenges earlier assumptions of short-range carrier diffusion in InGaN/GaN QWs. However, recent studies have demonstrated the potential for long-range diffusion, prompting further investigation into how QW design and growth conditions influence carrier diffusion length and μLED efficiency. This paper contributes to this investigation by examining carrier diffusion in c-plane InGaN/GaN single QW samples using photoluminescence experiments. By varying the QW thickness, we observe an increase in diffusion length with thicker QWs, consistent with the increased radiative recombination lifetime due to the quantum confined Stark effect. This suggests that reducing QW thickness could mitigate the size-dependent efficiency loss in μLEDs. As the substrate type plays a crucial role in advancing the industrialization of μLEDs, we compare carrier diffusion in QWs grown on a substrate of different nature: sapphire, freestanding GaN, and Si (111). Our results demonstrate that the three types of substrates enable long-range diffusion. Finally, analyzing the evolution of carrier diffusion length with carrier density reveals two opposite regimes. In the high-excitation regime, carrier diffusion length decreases by increasing the excitation power, which is in agreement with previous studies and supported by a diffusion–recombination model. However, in the low-excitation regime, carrier diffusion length unexpectedly increases by increasing the excitation power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助Yoooo采纳,获得10
刚刚
Sitroul完成签到,获得积分10
刚刚
1秒前
1秒前
我是老大应助醉熏的含烟采纳,获得10
2秒前
2秒前
无私的蛋挞完成签到,获得积分10
2秒前
在水一方应助乔治采纳,获得10
3秒前
里苏特发布了新的文献求助10
4秒前
窝头发布了新的文献求助10
4秒前
SciGPT应助mumu采纳,获得10
4秒前
科目三应助拂晨柳絮采纳,获得10
4秒前
5秒前
Cheny完成签到 ,获得积分10
5秒前
yangbo666发布了新的文献求助10
5秒前
6秒前
Sitroul发布了新的文献求助10
6秒前
jhlz5879完成签到,获得积分0
6秒前
NexusExplorer应助wzbc采纳,获得10
6秒前
科研通AI6应助fff采纳,获得10
6秒前
7秒前
lisbattery完成签到,获得积分10
7秒前
团1111完成签到,获得积分10
7秒前
司阔林发布了新的文献求助10
7秒前
xiaobai123456发布了新的文献求助10
8秒前
9秒前
贪吃蛇完成签到,获得积分10
9秒前
悦耳黑夜完成签到 ,获得积分10
9秒前
时安完成签到 ,获得积分10
10秒前
丘比特应助宁静致远采纳,获得10
10秒前
wei发布了新的文献求助10
10秒前
accelia完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
开心关注了科研通微信公众号
11秒前
赘婿应助561424175采纳,获得10
12秒前
木木夕云发布了新的文献求助10
13秒前
梓慧完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619271
求助须知:如何正确求助?哪些是违规求助? 4704013
关于积分的说明 14925684
捐赠科研通 4759427
什么是DOI,文献DOI怎么找? 2550503
邀请新用户注册赠送积分活动 1513237
关于科研通互助平台的介绍 1474401