亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal Client Selection of Federated Learning Based on Compressed Sensing

计算机科学 瓶颈 选择(遗传算法) 架空(工程) 任务(项目管理) 协议(科学) 收敛速度 趋同(经济学) 分布式计算 数据挖掘 机器学习 计算机网络 频道(广播) 医学 替代医学 管理 病理 经济 嵌入式系统 经济增长 操作系统
作者
Qing Li,Shanxiang Lyu,Jinming Wen
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tifs.2025.3526050
摘要

Federated learning faces challenges associated with privacy breaches, client communication efficiency, stragglers' effect, and heterogeneity. To address these challenges, this paper reformulates the optimal client selection problem as a sparse optimization task, proposes a secure and efficient optimal client selection method for federated learning, named secure orthogonal matching pursuit federated learning (SecOMPFL). Therein, we first introduce a method to identify correlations in the local model parameters of participating clients, addressing the issue of duplicated client contributions highlighted in recent literature. Next, we establish a secure variant of the OMP algorithm in compressed sensing using secure multiparty computation and propose a novel secure aggregation protocol. This protocol enhances the global model's convergence rate through sparse optimization techniques while maintaining privacy and security. It relies entirely on the local model parameters as inputs, minimizing client communication requirements. We also devise a client sampling strategy without requiring additional communication, resolving the bottleneck encountered by the optimal client selection policy. Finally, we introduce a strict yet inclusive straggler penalty strategy to minimize the impact of stragglers. Theoretical analysis confirms the security and convergence of SecOMPFL, highlighting its resilience to stragglers' effect and systematic/statistical heterogeneity with high client communication efficiency. Numerical experiments were conducted to compare the convergence rate and client communication efficiency of SecOMPFL with those of FedAvg, FOLB, and BN2. These experiments used natural and synthetic with statistical heterogeneity datasets, considering varying numbers of clients and client sampling scales. The results demonstrate that SecOMPFL achieves a competitive convergence rate, with communication overhead 39.96% lower than that of FOLB and 28.44% lower than that of BN2. Furthermore, SecOMPFL shows good resilience to statistical heterogeneity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的她完成签到 ,获得积分10
5秒前
小木完成签到,获得积分10
6秒前
CipherSage应助enen采纳,获得10
7秒前
深情安青应助w.h采纳,获得10
14秒前
任性蘑菇完成签到 ,获得积分10
15秒前
上官若男应助Murphy采纳,获得10
17秒前
Jasper应助小木采纳,获得10
17秒前
18秒前
胡一刀完成签到,获得积分10
23秒前
sunny完成签到,获得积分10
23秒前
enen发布了新的文献求助10
24秒前
25秒前
25秒前
29秒前
w.h发布了新的文献求助10
30秒前
zhangyu哥发布了新的文献求助10
34秒前
37秒前
晓豪完成签到,获得积分20
39秒前
晓豪发布了新的文献求助10
43秒前
enen完成签到,获得积分10
46秒前
dax大雄完成签到 ,获得积分10
50秒前
Hello应助胡博士采纳,获得10
50秒前
CHENCEN完成签到 ,获得积分10
54秒前
思源应助Murphy采纳,获得10
57秒前
59秒前
1分钟前
小木发布了新的文献求助10
1分钟前
胡博士发布了新的文献求助10
1分钟前
1分钟前
1分钟前
未耕发布了新的文献求助10
1分钟前
平常芷波完成签到 ,获得积分10
1分钟前
未耕完成签到,获得积分10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
orixero应助未耕采纳,获得10
1分钟前
xxxx完成签到,获得积分10
1分钟前
1分钟前
zhou完成签到,获得积分10
1分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121546
关于积分的说明 9347835
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273