Abstract The production of hydrogen peroxide (H 2 O 2 ) through two‐electron oxygen reduction reaction (2e − ORR) has emerged as a more environmentally friendly alternative to the traditional anthraquinone method. Although oxidized carbon catalysts have intensive developed due to their high selectivity and activity, the yield and conversion rate of H 2 O 2 under high overpotential still limited. The produced H 2 O 2 was rapidly consumed by the increased intensity of H 2 O 2 reduction, which could ascribe to decomposition of peroxide radicals under high voltage in the carbon catalyst. To overcome this issue, a B doped carbon have been developed to catalyze 2e − ORR with high efficient through suppressing H 2 O 2 decomposition at high potential. Thus, thermal reducing of oxygen containing groups (OCGs) on graphite could construct defects and vacancies, which in situ convert to B−C x subunits on the edge of graphene sheets. The introduction of B−C x effectively prevented the decomposition of the *O−O bond and provided suitable adsorption capacity for *OOH, achieving excellent selectivity for the 2e − ORR across a wide voltage range. Finally, a remarkable H 2 O 2 yield of 7.91 mmol cm −2 h −1 was delivered at an industrial current density of 600 mA cm −2 , which could provide “green” pathway for scale‐upable synthesis H 2 O 2 .