On Algorithmically Determined Versus Traditional Macroseismic Intensity Assignments

强度(物理) 地质学 地震学 大地测量学 统计 数学 物理 光学
作者
S. E. Hough
出处
期刊:Seismological Research Letters [Seismological Society]
标识
DOI:10.1785/0220240266
摘要

Abstract The utility of macroseismic data, defined as the effects of earthquakes on humans and the built environment, has been increasingly recognized following the advent of online systems that now produce unprecedented volumes of macroseismic intensity information. Contributed reports from the U.S. Geological Survey “Did You Feel It?” (DYFI) system (Wald et al., 1999) are used to generate intensity values with an algorithm based on seminal work by Dengler and Dewey (1998). The algorithm was developed initially to reproduce intensity values assigned by expert opinion using questionnaire results collected by telephone survey. In this article, I discuss reasons why intensity values from (self-selected) DYFI responses can differ from values that would be assigned by expert opinion given more complete data from randomly selected participants. For example, with the data used by Dengler and Dewey (1998), intensities near 4 could be determined from the percentage of people who felt shaking in each town. With less spatially rich data from self-selected participants, this percentage often cannot be determined reliably. Audible noises are key additional diagnostic criteria for modified Mercalli intensity (MMI) 4, but, although the DYFI system includes a question about noise, following Dengler and Dewey (1998), the DYFI algorithm does not include a noise indicator. At the upper end of the scale, as defined the DYFI algorithm yields a maximum intensity value of 9.05, nominally corresponding to peak ground acceleration of 75%g. These and other factors can result in DYFI values that are low compared to traditional MMI values assigned using expert opinion, even absent factors that can bias traditional MMI assignments. Modern ground-motion intensity conversion equations determined using DYFI intensities are expected to be appropriate for DYFI intensities, but the results of this study suggest that biases may be introduced if DYFI and traditional intensities are assumed to be interchangeable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxwang完成签到,获得积分10
刚刚
廖同学完成签到 ,获得积分10
1秒前
orixero应助李家乐采纳,获得10
1秒前
2秒前
2秒前
lujiajia发布了新的文献求助10
2秒前
3秒前
啊啊啊啊啊叶完成签到 ,获得积分10
3秒前
LLL完成签到 ,获得积分10
3秒前
sanyecao383完成签到,获得积分10
3秒前
Draeck完成签到,获得积分10
4秒前
cruise完成签到,获得积分10
4秒前
在水一方应助念念采纳,获得10
4秒前
4秒前
5秒前
万能图书馆应助动听导师采纳,获得10
5秒前
MADKAI发布了新的文献求助10
5秒前
科研通AI5应助蒋念寒采纳,获得10
6秒前
ric发布了新的文献求助200
6秒前
Li完成签到,获得积分10
6秒前
6秒前
min17完成签到,获得积分10
7秒前
7秒前
小黄发布了新的文献求助10
7秒前
Lucas应助dldddz采纳,获得10
8秒前
8秒前
柠木发布了新的文献求助10
8秒前
郭泓嵩完成签到,获得积分10
9秒前
自由刺猬发布了新的文献求助20
9秒前
weddcf发布了新的文献求助10
9秒前
江月年完成签到 ,获得积分10
9秒前
ZHANG_Kun完成签到 ,获得积分10
9秒前
bin0920完成签到,获得积分10
10秒前
11秒前
11秒前
cruise发布了新的文献求助10
11秒前
向日葵的Rui完成签到,获得积分10
11秒前
小xy发布了新的文献求助10
11秒前
12秒前
香蕉觅云应助青石采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678