On Algorithmically Determined Versus Traditional Macroseismic Intensity Assignments

强度(物理) 地质学 地震学 大地测量学 统计 数学 物理 光学
作者
S. E. Hough
出处
期刊:Seismological Research Letters [Seismological Society]
标识
DOI:10.1785/0220240266
摘要

Abstract The utility of macroseismic data, defined as the effects of earthquakes on humans and the built environment, has been increasingly recognized following the advent of online systems that now produce unprecedented volumes of macroseismic intensity information. Contributed reports from the U.S. Geological Survey “Did You Feel It?” (DYFI) system (Wald et al., 1999) are used to generate intensity values with an algorithm based on seminal work by Dengler and Dewey (1998). The algorithm was developed initially to reproduce intensity values assigned by expert opinion using questionnaire results collected by telephone survey. In this article, I discuss reasons why intensity values from (self-selected) DYFI responses can differ from values that would be assigned by expert opinion given more complete data from randomly selected participants. For example, with the data used by Dengler and Dewey (1998), intensities near 4 could be determined from the percentage of people who felt shaking in each town. With less spatially rich data from self-selected participants, this percentage often cannot be determined reliably. Audible noises are key additional diagnostic criteria for modified Mercalli intensity (MMI) 4, but, although the DYFI system includes a question about noise, following Dengler and Dewey (1998), the DYFI algorithm does not include a noise indicator. At the upper end of the scale, as defined the DYFI algorithm yields a maximum intensity value of 9.05, nominally corresponding to peak ground acceleration of 75%g. These and other factors can result in DYFI values that are low compared to traditional MMI values assigned using expert opinion, even absent factors that can bias traditional MMI assignments. Modern ground-motion intensity conversion equations determined using DYFI intensities are expected to be appropriate for DYFI intensities, but the results of this study suggest that biases may be introduced if DYFI and traditional intensities are assumed to be interchangeable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Index发布了新的文献求助10
1秒前
刘雪晴完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
卡他发布了新的文献求助10
4秒前
雨乐发布了新的文献求助10
6秒前
suntee发布了新的文献求助10
6秒前
8秒前
33333完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
KKKK发布了新的文献求助10
9秒前
10秒前
木易木土完成签到,获得积分10
11秒前
11秒前
天天快乐应助Fan采纳,获得10
11秒前
yu关闭了yu文献求助
12秒前
Jasper应助ychen采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
十月完成签到,获得积分10
16秒前
能干巨人应助科研通管家采纳,获得10
16秒前
aaa完成签到,获得积分10
16秒前
李健应助科研通管家采纳,获得10
16秒前
16秒前
pluto应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704