Diffusion transformer model with compact prior for low-dose PET reconstruction

扩散 材料科学 变压器 核医学 计算机科学 物理 医学 电压 量子力学 热力学
作者
Bin Huang,Xubiao Liu,Fang Lei,Qiegen Liu,Bingxuan Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:70 (4): 045015-045015 被引量:2
标识
DOI:10.1088/1361-6560/adac25
摘要

Abstract Objective. Positron emission tomography (PET) is an advanced medical imaging technique that plays a crucial role in non-invasive clinical diagnosis. However, while reducing radiation exposure through low-dose PET scans is beneficial for patient safety, it often results in insufficient statistical data. This scarcity of data poses significant challenges for accurately reconstructing high-quality images, which are essential for reliable diagnostic outcomes. Approach. In this research, we propose a diffusion transformer model (DTM) guided by joint compact prior to enhance the reconstruction quality of low-dose PET imaging. In light of current research findings, we present a pioneering PET reconstruction model that integrates diffusion and transformer models for joint optimization. This model combines the powerful distribution mapping abilities of diffusion model with the capacity of transformers to capture long-range dependencies, offering significant advantages for low-dose PET reconstruction. Additionally, the incorporation of the lesion refining block and alternating direction method of multipliers enhance the recovery capability of lesion regions and preserves detail information, solving blurring problems in lesion areas and texture details of most deep learning frameworks. Main results . Experimental results validate the effectiveness of DTM in reconstructing low-dose PET image quality. DTM achieves state-of-the-art performance across various metrics, including PSNR, SSIM, NRMSE, CR, and COV, demonstrating its ability to reduce noise while preserving critical clinical details such as lesion structure and texture. Compared with baseline methods, DTM delivers best results in denoising and lesion preservation across various low-dose levels, including 10%, 25%, 50%, and even ultra-low-dose level such as 1%. DTM shows robust generalization performance on phantom and patient datasets, highlighting its adaptability to varying imaging conditions. Significance . This approach reduces radiation exposure while ensuring reliable imaging for early disease detection and clinical decision-making, offering a promising tool for both clinical and research applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
樱桃汽水怪兽完成签到,获得积分10
1秒前
1秒前
葛粉圆子完成签到 ,获得积分10
1秒前
标致幼菱完成签到,获得积分10
4秒前
5秒前
6秒前
BJYX发布了新的文献求助10
6秒前
葛粉圆子关注了科研通微信公众号
7秒前
脑洞疼应助嗷嗷嗷采纳,获得30
9秒前
nbtzy完成签到,获得积分10
10秒前
lmn发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
BJYX完成签到,获得积分10
14秒前
old杜完成签到,获得积分20
16秒前
米修发布了新的文献求助10
16秒前
自由的飞薇完成签到,获得积分10
17秒前
喏晨发布了新的文献求助10
17秒前
17秒前
浮游应助123采纳,获得10
19秒前
shukq发布了新的文献求助10
19秒前
20秒前
20秒前
陆陆完成签到,获得积分10
21秒前
Zrysaa完成签到,获得积分10
23秒前
浮游应助淡定的友容采纳,获得10
25秒前
25秒前
JoJo完成签到,获得积分10
25秒前
25秒前
星月夜完成签到,获得积分10
26秒前
26秒前
鹿璟璟完成签到,获得积分10
27秒前
Owen应助自由的飞薇采纳,获得10
28秒前
英吉利25发布了新的文献求助10
29秒前
整齐的惮发布了新的文献求助10
30秒前
浮游应助昏睡的墨镜采纳,获得10
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456321
求助须知:如何正确求助?哪些是违规求助? 4563152
关于积分的说明 14288758
捐赠科研通 4487709
什么是DOI,文献DOI怎么找? 2457999
邀请新用户注册赠送积分活动 1448365
关于科研通互助平台的介绍 1423968