Utility of the radiological report function of an artificial intelligence system in interpreting CBCT images: a technical report

放射性武器 医学物理学 计算机科学 功能(生物学) 人工智能 医学 计算机视觉 放射科 生物 进化生物学
作者
Luciano Tonetto Feltraco,C. Rossetto,Andy Wai Kan Yeung,Mariana Quirino Silveira Soares,Anne Caroline Costa Oenning
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
标识
DOI:10.1093/dmfr/twaf004
摘要

The aim of this technical report was to assess whether the "Radiological Report" tool within the Artificial Intelligence (AI) software Diagnocat can achieve a satisfactory level of performance comparable to that of experienced dentomaxillofacial radiologists in interpreting cone-beam CT scans. Ten cone-beam CT scans were carefully selected and analyzed using the AI tool, and they were also evaluated by two dentomaxillofacial radiologists. Observations related to tooth numeration, alterations in dental crowns, roots, and periodontal tissues were documented and subsequently compared to the AI findings. Kappa statistics, along with their corresponding 95% confidence intervals, were calculated to ascertain the degree of agreement. The agreement between the AI tool and the radiologists ranged from substantial to nearly perfect for identifying teeth, determining the number of roots and canals, assessing crown conditions, and detecting endodontic treatments. However, for tasks such as classifying bone loss, identifying posts, evaluating the quality of fillings, and appraising the situation of periodontal spaces, the agreement was deemed slight. The "radiological report" tool of the Diagnocat demonstrates satisfactory performance in reliably identifying teeth, roots, canals, assessing crown conditions, and detecting endodontic treatment. However, further investigations are needed to evaluate the tool's effectiveness in diagnosing posts, assessing the condition and quality of fillings, and determining the status of periodontal spaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小陈发布了新的文献求助10
1秒前
超帅的麦片完成签到,获得积分10
1秒前
Singularity应助善良的冷梅采纳,获得10
1秒前
2秒前
2秒前
LingC发布了新的文献求助10
2秒前
上官若男应助时尚猎豹采纳,获得10
3秒前
3秒前
大模型应助高大橙采纳,获得10
4秒前
隐形曼青应助dawn采纳,获得10
4秒前
充电宝应助count采纳,获得10
5秒前
Hawk发布了新的文献求助10
5秒前
拼搏的以彤完成签到,获得积分10
5秒前
爆米花应助丸橙采纳,获得10
5秒前
6秒前
8秒前
8秒前
叶天师完成签到,获得积分10
8秒前
我是老大应助阿德利企鹅采纳,获得10
9秒前
xuan发布了新的文献求助10
9秒前
怕孤独的从雪完成签到,获得积分10
9秒前
LDDDGR完成签到,获得积分10
10秒前
明亮师完成签到 ,获得积分10
10秒前
10秒前
爆米花应助John采纳,获得10
11秒前
黄色新闻关注了科研通微信公众号
11秒前
Orange应助戒骄戒躁采纳,获得10
11秒前
xiaoW完成签到,获得积分20
11秒前
Jasper应助冷静的荔枝采纳,获得10
11秒前
11秒前
顶级洋仔发布了新的文献求助10
12秒前
小陈完成签到,获得积分10
12秒前
jjhh发布了新的文献求助20
13秒前
可乐完成签到,获得积分20
13秒前
耍酷白安发布了新的文献求助10
14秒前
14秒前
易吴鱼完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731567
求助须知:如何正确求助?哪些是违规求助? 3275907
关于积分的说明 9994466
捐赠科研通 2991430
什么是DOI,文献DOI怎么找? 1641527
邀请新用户注册赠送积分活动 779895
科研通“疑难数据库(出版商)”最低求助积分说明 748498