亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neighborhood Topology-Aware Knowledge Graph Learning and Microbial Preference Inferring for Drug-Microbe Association Prediction

计算机科学 图形 利用 联想(心理学) 语义学(计算机科学) 网络拓扑 人工智能 理论计算机科学 代表(政治) 机器学习 拓扑(电路) 数学 心理学 计算机安全 组合数学 政治 政治学 法学 心理治疗师 程序设计语言 操作系统
作者
Jing Gu,Tiangang Zhang,Yihang Gao,Sentao Chen,Yuxin Zhang,Hui Cui,Ping Xuan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (1): 435-445
标识
DOI:10.1021/acs.jcim.4c01544
摘要

The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities. In addition, they ignored the case that a microbe prefers to associate with its own specific drugs. A novel prediction method, PCMDA, was proposed by learning the neighborhood topologies of entities, inferring the association preferences, and integrating the features of each entity pair based on multiple biological premises. First, a knowledge graph consisting of microbe, disease, and drug entities is established to help the subsequent integration of the topological structure of entities and the similarity, interaction, and association relationship between any two entities. We generate various topological embeddings for each microbe (or drug) entity through random walks with neighborhood restarts on the microbe-disease-drug knowledge graph. Distance-level attention is designed to adaptively fuse neighborhood topologies covering multiple ranges. Second, the topological embeddings of entities imply the latent topological relationships between entities, while the relational embeddings of entities are derived from the semantics of connections among the entities. The topological structure and relational semantics of entities are fused by a designed knowledge graph learning module based on multilayer perceptron networks. Third, considering the preference that each microbe tends to especially associate with a group of drugs, information-level attention is designed to integrate the dependency between microbial preference and the candidate drug. Finally, a dual-gated network is established to encode the features of a microbe-drug entity pair from multiple biological perspectives. The comparative experiments with seven state-of-the-art methods demonstrate PCMDA's superior performance for microbe-drug association prediction. The case studies on three drugs and the recall rate evaluation for the top-ranked candidates indicate that PCMDA has the capability of discovering reliable candidate microbes associated with a drug. The datasets and source codes are freely available at https://github.com/pingxuan-hlju/pcmda.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myf完成签到,获得积分10
18秒前
18秒前
myf发布了新的文献求助10
21秒前
酷波er应助benbenca采纳,获得20
33秒前
阿尔法贝塔完成签到 ,获得积分10
49秒前
lily给lily的求助进行了留言
56秒前
1分钟前
1分钟前
Ling发布了新的文献求助10
1分钟前
清秀的之桃完成签到 ,获得积分10
1分钟前
benbenca发布了新的文献求助20
1分钟前
陈琴完成签到,获得积分20
1分钟前
大模型应助帅气绮露采纳,获得10
1分钟前
1分钟前
帅气绮露完成签到,获得积分10
1分钟前
帅气绮露发布了新的文献求助10
1分钟前
简单的红酒完成签到 ,获得积分10
1分钟前
陆上飞完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
lily发布了新的文献求助10
1分钟前
老宇126完成签到,获得积分10
1分钟前
含蓄戾完成签到 ,获得积分10
2分钟前
lily完成签到,获得积分10
2分钟前
是是是发布了新的文献求助10
2分钟前
清净163完成签到,获得积分10
2分钟前
2分钟前
2分钟前
YY发布了新的文献求助10
2分钟前
2分钟前
Ling发布了新的文献求助10
2分钟前
zwq关注了科研通微信公众号
2分钟前
垚祎完成签到 ,获得积分10
2分钟前
清净126完成签到 ,获得积分10
3分钟前
panpan00发布了新的文献求助10
3分钟前
3分钟前
3分钟前
zwq发布了新的文献求助10
3分钟前
......发布了新的文献求助10
3分钟前
zyx完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466817
求助须知:如何正确求助?哪些是违规求助? 3059596
关于积分的说明 9067206
捐赠科研通 2750066
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896