Improving Online Handwriting Trajectory Reconstruction Based on Temporal Convolutional Networks

计算机科学 笔迹 人工智能 基本事实 弹道 增采样 计算机视觉 卷积神经网络 插值(计算机图形学) 运动(物理) 物理 天文 图像(数学)
作者
Alexey Serdyuk,Fabian Kreß,Iuliia Topko,Tanja Harbaum,Jürgen Becker,Tim Hamann,Peter Kämpf
标识
DOI:10.1109/sdf63218.2024.10773805
摘要

Online handwriting trajectory acquisition enables a broad spectrum of educational applications by providing relevant and individualized feedback during the learning process. Acquiring handwriting with Inertial Measurement Units (IMUs) is a natural choice due to the compact form factor of this kind of sensor, allowing to integrate them into small size microcontroller-based devices like ball point pens, without compromising their ergonomics. Existing approaches have successfully utilized Temporal Convolutional Networks (TCNs) for trajectory reconstruction, achieving notable results. However, it is still a challenging task to achieve precise handwriting reconstruction due to unevenly sampled ground truth data in publicly available datasets and alignment errors of both the training and ground truth data. In order to address these issues, we introduce a new preprocessing pipeline that incorporates longer valid training sequences and employs spline interpolation for more accurate ground truth data representation. We demonstrate that downsampling the training data to 50 Hz leads to better reconstruction accuracy compared to the baseline while extending the effective receptive field of the TCN. Consequently, we evaluate different sensor configurations, showing that a minimal setup with one accelerometer, gyroscope, and writing force sensor can achieve results comparable to more complex configurations. Additionally, we provide insights into the interpretation of Fréchet distance metrics for assessing handwriting reconstruction quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lj完成签到 ,获得积分10
刚刚
鲜艳的千易完成签到,获得积分10
1秒前
freshman3005完成签到,获得积分10
1秒前
2秒前
2秒前
寒风完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Sasap发布了新的文献求助10
5秒前
6秒前
noneofyours发布了新的文献求助10
7秒前
李爱国应助zqz421采纳,获得10
7秒前
8秒前
默默小鸽子完成签到 ,获得积分10
9秒前
10秒前
10秒前
爆米花应助炽天使采纳,获得10
11秒前
Xiancai发布了新的文献求助10
11秒前
烟花应助幸福广山采纳,获得10
11秒前
ding应助Jack采纳,获得10
13秒前
13秒前
13秒前
科研通AI5应助bigstone采纳,获得10
14秒前
14秒前
14秒前
科研通AI2S应助爱喝奶茶采纳,获得10
15秒前
科研通AI5应助钱来采纳,获得10
15秒前
dsv完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
李健的粉丝团团长应助C.采纳,获得10
17秒前
17秒前
张文卓完成签到,获得积分10
18秒前
xff发布了新的文献求助10
19秒前
神羊发布了新的文献求助10
19秒前
Sasap完成签到,获得积分10
20秒前
20秒前
anlikek发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745298
求助须知:如何正确求助?哪些是违规求助? 3288239
关于积分的说明 10057865
捐赠科研通 3004450
什么是DOI,文献DOI怎么找? 1649662
邀请新用户注册赠送积分活动 785484
科研通“疑难数据库(出版商)”最低求助积分说明 751098