已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8

计算机科学 计算 瓶颈 棱锥(几何) 卷积(计算机科学) 特征(语言学) 算法 特征提取 模式识别(心理学) 人工智能 人工神经网络 嵌入式系统 数学 语言学 哲学 几何学
作者
Junjie Li,Meng Cheng
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:100 (2): 025016-025016
标识
DOI:10.1088/1402-4896/ad9ef1
摘要

Abstract Aiming at the existing bearing defect detection algorithms with low accuracy, large number of parameters and computation, this paper proposes an efficient and lightweight bearing surface defect detection algorithm FBS-YOLO based on YOLOv8. Firstly, FasterNet replaces the original feature extraction network of YOLOv8, and uses Partial Convolution (PConv) to reduce redundant computation and memory access. Secondly, the fusion of weighted Bidirectional Feature Pyramid Network (BiFPN) in Neck network, which removes less efficient feature transmission nodes in the process of multi-scale feature fusion to achieve a higher level of fusion, improves the fusion efficiency of features at different scales. Finally, the advantages of Switchable Atrous Convolution (SAConv) are introduced to innovate the CSP Bottleneck with the two convolutions (C2f) module in the original model Neck network, and SAConv is combined with C2f (C2f_SAConv) to from a more flexible module adapted to the features of different scales is proposed to enhance the feature extraction and processing capability of the model. The experimental results show that the algorithm FBS-YOLO proposed in this paper achieves a mAP of 91.4% in the bearing defect detection task, which is 2.8% higher than that of the original YOLO8 model, and the number of parameters and computation volume are reduced by 39.8% and 41.9%, respectively, and the model inference speed can be up to 161 fps. The algorithm meets the light-weight requirements of industrial detection deployment while maintaining high accuracy, effectively achieving a balance between model lightweight and performance, and providing new ideas for end-to-end industrial deployment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
screct完成签到,获得积分10
8秒前
隐形曼青应助陈一采纳,获得10
10秒前
12秒前
Vicky发布了新的文献求助10
13秒前
13秒前
冷静柚子完成签到,获得积分10
14秒前
14秒前
科研小螃蟹完成签到,获得积分10
14秒前
斯文觅云完成签到 ,获得积分10
15秒前
Ava应助光亮念文采纳,获得10
15秒前
15秒前
杏游完成签到,获得积分10
16秒前
zzj发布了新的文献求助10
18秒前
dakache完成签到,获得积分10
18秒前
冷静柚子发布了新的文献求助10
20秒前
Akim应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得20
21秒前
cocolu应助科研通管家采纳,获得20
21秒前
21秒前
22秒前
大个应助糟糕的代丝采纳,获得10
22秒前
shjyang完成签到,获得积分0
23秒前
WOLI空空发布了新的文献求助10
25秒前
可爱的函函应助从容凌萱采纳,获得10
26秒前
CodeCraft应助从容凌萱采纳,获得10
26秒前
27秒前
所所应助卜青采纳,获得10
27秒前
CipherSage应助鲤鱼凛采纳,获得10
28秒前
小星星完成签到 ,获得积分10
28秒前
29秒前
fanlee完成签到,获得积分10
29秒前
淡然向松完成签到 ,获得积分10
31秒前
XJLQAQ完成签到,获得积分10
31秒前
Zn0103发布了新的文献求助10
35秒前
38秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463408
求助须知:如何正确求助?哪些是违规求助? 3056814
关于积分的说明 9054064
捐赠科研通 2746685
什么是DOI,文献DOI怎么找? 1507036
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695859