Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials

材料科学 订单(交换) 纳米技术 工程物理 工程伦理学 工程类 业务 财务
作者
Hamidreza Yazdani Sarvestani,Surabhi Nadigotti,Erfan Fatehi,Derek Aranguren van Egmond,Behnam Ashrafi
出处
期刊:Advanced Engineering Materials [Wiley]
标识
DOI:10.1002/adem.202402486
摘要

Disordered structures, characterized by their lack of periodicity, present significant challenges in fields such as materials science and biology. Conventional methods often fall short of capturing the intricate properties and behaviors of these complex systems. For example, the prediction of material properties in amorphous polymers and high‐entropy alloys has historically been inaccurate due to their inherent disorder, which arises from the probabilistic nature of structural defects and nonuniform atomic arrangements. However, the rise of machine learning (ML) offers a revolutionary approach to understanding and predicting the behavior of disordered materials. This perspective article explores how ML techniques, including neural networks and generative models, provide unprecedented insights into materials with inherent disorder, driving advances in industries such as energy storage, drug discovery, and structural engineering. By leveraging powerful algorithms, researchers can now predict structural properties, identify hidden patterns, and accelerate the discovery of novel materials. Case studies illustrate the ability of ML to overcome data scarcity, enhance model reliability, and enable real‐time analysis of disordered structures. While challenges such as data quality and computational costs remain, the integration of ML with traditional methods marks a transformative leap in our ability to navigate the disordered landscape, setting the stage for ground‐breaking discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
幽芊细雨完成签到,获得积分10
2秒前
与落发布了新的文献求助10
2秒前
英俊的铭应助衰神采纳,获得10
2秒前
李深深完成签到,获得积分20
3秒前
3秒前
3秒前
zzz发布了新的文献求助30
4秒前
4秒前
lhj发布了新的文献求助10
4秒前
4秒前
4秒前
医学小菜鸡完成签到,获得积分10
6秒前
pys完成签到,获得积分10
6秒前
Wt发布了新的文献求助20
6秒前
完美世界应助哈哈哈采纳,获得10
6秒前
悦耳的妙竹完成签到,获得积分10
6秒前
6秒前
细腻冰双发布了新的文献求助10
7秒前
rot发布了新的文献求助10
7秒前
LightFlash完成签到,获得积分10
7秒前
xh完成签到,获得积分20
7秒前
白白发布了新的文献求助10
8秒前
8秒前
8秒前
袁大头发布了新的文献求助10
8秒前
9秒前
英姑应助潮湿梦采纳,获得10
9秒前
活力的冷雪关注了科研通微信公众号
9秒前
sbrcpyf发布了新的文献求助10
9秒前
10秒前
xg完成签到,获得积分20
11秒前
Natua发布了新的文献求助10
12秒前
sukkei应助zzz采纳,获得10
13秒前
xh发布了新的文献求助10
13秒前
文艺金针菇完成签到 ,获得积分10
13秒前
海问天发布了新的文献求助10
14秒前
14秒前
关清明完成签到,获得积分10
14秒前
悠悠完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515510
求助须知:如何正确求助?哪些是违规求助? 3097850
关于积分的说明 9236939
捐赠科研通 2792825
什么是DOI,文献DOI怎么找? 1532705
邀请新用户注册赠送积分活动 712209
科研通“疑难数据库(出版商)”最低求助积分说明 707201