清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research on cigarette moisture anomaly risk identification based on an improved NGBoost algorithm

水分 异常(物理) 鉴定(生物学) 环境科学 算法 假阳性悖论 异常检测 质量(理念) 计算机科学 农业工程 数据挖掘 统计 数学 工程类 气象学 地理 植物 生物 认识论 物理 哲学 凝聚态物理
作者
Wenbo Wang,Wanli Liu,Xu Kong,Wei Ding,Ming Chen,Ming Li,Ming‐Xing Li,Ting Qin,Liming Zhu
标识
DOI:10.1117/12.3052570
摘要

Once quality abnormalities such as tobacco mildew and excessive moisture occur in cigarette production, it often necessitates the lockdown or even scrapping of a significant portion of the inventory. This can result in widespread market complaints. Therefore, timely identification of moisture anomalies in cigarettes is of paramount importance to adjust relevant parameters or operational processes for subsequent batches promptly. This paper proposes a method for identifying cigarette moisture anomaly risks based on an improved NGBoost algorithm. This method focuses on the moisture content of finished products, involves cleansing time-series data of moisture chain-related influencing parameters, extracting feature parameters using SHAP Value, and ultimately establishing a moisture prediction model using NGBoost. Trend analysis is conducted on the residuals between predicted and actual values on a weekly basis. A change in trend in the residuals serves as a timely alert for moisture anomalies. The results indicate that in 2023, the model identified moisture anomaly risks a total of 18 times, with 14 confirmed as actual risky states. There were 6 instances of false positives. The identification accuracy reached 77.8%, effectively mitigating the quality risks associated with moisture anomalies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
10秒前
勤奋流沙完成签到 ,获得积分10
16秒前
朴素海亦完成签到 ,获得积分10
25秒前
30秒前
1分钟前
1分钟前
1分钟前
小白菜完成签到,获得积分10
1分钟前
1分钟前
袁青寒完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
魔术师完成签到 ,获得积分10
2分钟前
2分钟前
瞿寒完成签到,获得积分10
2分钟前
快乐的笑阳完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
香蕉觅云应助huenguyenvan采纳,获得10
3分钟前
李健应助阿萨卡先生采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Ava应助阿萨卡先生采纳,获得10
3分钟前
ZaZa完成签到,获得积分10
3分钟前
3分钟前
4分钟前
李剑鸿完成签到,获得积分10
4分钟前
李剑鸿发布了新的文献求助100
4分钟前
4分钟前
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
junzzz完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210