Wrinkled thermoplastic polyamide elastomer foams with enhanced mechanical properties fabricated by dynamic supercritical CO2 foaming

材料科学 聚酰胺 超临界流体 复合材料 弹性体 热塑性弹性体 热塑性塑料 聚合物 共聚物 有机化学 化学
作者
Weipeng Zhong,Xu Zhou,Miaomiao Zhang,Wenhao Cui,Hao‐Yang Mi,Binbin Dong,Chuntai Liu,Changyu Shen
出处
期刊:Polymer Engineering and Science [Wiley]
标识
DOI:10.1002/pen.27048
摘要

Abstract Wrinkled foams (WF), distinguished by their numerous cell wall wrinkles, exhibit superior impact resistance compared to conventional foams (CF), making them ideal for applications such as sports protection and packaging. Despite their potential, the mechanisms behind wrinkle formation remain underexplored, limiting production and process optimization. In this study, we use a custom supercritical foaming reactor with a sapphire glass viewing window to investigate the differences between wrinkled and conventional thermoplastic polyamide elastomer foams. Our findings suggest that “excessive expansion‐shrinkage” is crucial for wrinkle development. Molecular dynamics simulations reveal that molecular chains align with the flow field of dynamic CO 2 , which increases the intramolecular stress. The release of intramolecular stress triggers wrinkle formation, driven by thermodynamic instability. Furthermore, comparisons of the impact resistance and compression performance between WF and CF show that wrinkled structures alter the deformation behavior under force. The wrinkles facilitate increased collision, squeezing, and friction between cell walls, thus dissipating energy as heat and creating “micro‐air units” that enhance cushioning capability. These distinctive characteristics make WF a promising material for high‐performance applications in cushioning and energy absorption, such as in sports protection and packaging. Highlights Wrinkled polyamide foams are fabricated by dynamic scCO 2 foaming. Chain stretching and shrinkage under scCO 2 flow are verified by MD simulation. Excessive expansion‐shrinkage foaming behavior causes the wrinkled structure. Wrinkled structure greatly increases the impact absorption ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鹿c3完成签到,获得积分10
1秒前
2秒前
3秒前
千十一发布了新的文献求助10
4秒前
123完成签到,获得积分10
6秒前
7秒前
AJiE完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
朴实雨竹完成签到,获得积分10
10秒前
彭于晏应助快来和姐妹玩采纳,获得10
13秒前
布曲完成签到 ,获得积分10
15秒前
魏伯安发布了新的文献求助10
16秒前
zhiyu完成签到,获得积分10
17秒前
胡图图完成签到,获得积分10
18秒前
19秒前
夏夜完成签到 ,获得积分10
20秒前
彩色的德地完成签到,获得积分10
20秒前
Kevin应助无语采纳,获得20
21秒前
晨曦完成签到,获得积分10
22秒前
小雅完成签到 ,获得积分10
25秒前
26秒前
lqy完成签到,获得积分20
26秒前
exosome完成签到,获得积分10
30秒前
31秒前
草履虫完成签到,获得积分10
32秒前
Yuu完成签到,获得积分10
34秒前
雁塔完成签到 ,获得积分10
34秒前
任性的傲柏完成签到,获得积分10
35秒前
Nancy发布了新的文献求助30
36秒前
39秒前
ding应助焰色天雷采纳,获得10
40秒前
41秒前
草原狼完成签到,获得积分10
44秒前
QXS完成签到 ,获得积分10
44秒前
chen完成签到 ,获得积分10
46秒前
yellow完成签到 ,获得积分10
46秒前
黄叶飞完成签到,获得积分10
46秒前
羊白玉完成签到 ,获得积分10
50秒前
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Textures of Liquid Crystals 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671400
求助须知:如何正确求助?哪些是违规求助? 3228186
关于积分的说明 9778945
捐赠科研通 2938498
什么是DOI,文献DOI怎么找? 1610051
邀请新用户注册赠送积分活动 760520
科研通“疑难数据库(出版商)”最低求助积分说明 736020