Superhydrophobic surfaces are considered to be an effective method for anti-icing, but passive anti-icing alone is not as effective as it should be, so it is crucial to develop effective anti-icing techniques. In this study, a photothermal anti-icing structure with multienergy barriers was designed by combining active and passive anti-icing technologies and prepared by a three-step method of laser etching, hydrothermal growth of nanostructures, and chemical modification based on the Cassie-Baxter-Wenzel transition theory. The experimental results show that the static water contact angle of the prepared surface is up to 160°, the sliding angle is less than 3.6°, and the surface temperature is 25 °C higher than that of the original control group over 100 s under standard solar irradiation. The multienergy barrier design greatly prolongs the time of the anti-icing, and the durability test shows that the surface maintains superhydrophobicity even after the abrasion of sandpaper and the impact of sand. This superhydrophobic photothermal coating has great potential for anti-icing and deicing applications.