Genome-wide Mendelian randomization identifies actionable novel drug targets for psychiatric disorders

孟德尔随机化 精神分裂症(面向对象编程) 全基因组关联研究 药物重新定位 双相情感障碍 重性抑郁障碍 表达数量性状基因座 精神科 医学 转录组 药品 生物信息学 生物 单核苷酸多态性 遗传学 基因 遗传变异 认知 基因表达 基因型
作者
Jiewei Liu,Yuqi Cheng,Ming Li,Zhijun Zhang,Tao Li,Xiong‐Jian Luo
出处
期刊:Neuropsychopharmacology [Springer Nature]
卷期号:48 (2): 270-280 被引量:54
标识
DOI:10.1038/s41386-022-01456-5
摘要

Psychiatric disorders impose tremendous economic burden on society and are leading causes of disability worldwide. However, only limited drugs are available for psychiatric disorders and the efficacy of most currently used drugs is poor for many patients. To identify novel therapeutic targets for psychiatric disorders, we performed genome-wide Mendelian randomization analyses by integrating brain-derived molecular quantitative trait loci (mRNA expression and protein abundance quantitative trait loci) of 1263 actionable proteins (targeted by approved drugs or drugs in clinical phase of development) and genetic findings from large-scale genome-wide association studies (GWASs). Using transcriptome data, we identified 25 potential drug targets for psychiatric disorders, including 12 genes for schizophrenia, 7 for bipolar disorder, 7 for depression, and 1 (TIE1) for attention deficit and hyperactivity. We also identified 10 actionable drug targets by using brain proteome data, including 4 (HLA-DRB1, CAMKK2, P2RX7, and MAPK3) for schizophrenia, 1 (PRKCB) for bipolar disorder, 6 (PSMB4, IMPDH2, SERPINC1, GRIA1, P2RX7 and TAOK3) for depression. Of note, MAPK3 and HLA-DRB1 were supported by both transcriptome and proteome-wide MR analyses, suggesting that these two proteins are promising therapeutic targets for schizophrenia. Our study shows the power of integrating large-scale GWAS findings and transcriptomic and proteomic data in identifying actionable drug targets. Besides, our findings prioritize actionable novel drug targets for development of new therapeutics and provide critical drug-repurposing opportunities for psychiatric disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄的鹤发布了新的文献求助20
刚刚
yuyuyuan完成签到,获得积分10
1秒前
爆米花应助木心长采纳,获得10
1秒前
娜行完成签到 ,获得积分10
1秒前
caohuijun发布了新的文献求助10
2秒前
Akim应助JasonSun采纳,获得30
4秒前
8秒前
孤独梦安完成签到 ,获得积分10
8秒前
英俊完成签到,获得积分10
8秒前
乐乐应助风格化橙采纳,获得10
9秒前
喜悦发卡完成签到,获得积分10
10秒前
活力的泥猴桃完成签到 ,获得积分10
11秒前
12秒前
xinxinwen完成签到,获得积分10
12秒前
13秒前
13秒前
EMMA发布了新的文献求助10
14秒前
Cc关闭了Cc文献求助
14秒前
TTRO完成签到,获得积分10
14秒前
m_seek完成签到,获得积分10
15秒前
木心长发布了新的文献求助10
16秒前
16秒前
土二给土二的求助进行了留言
16秒前
17秒前
在水一方应助十五采纳,获得10
19秒前
Yzh完成签到,获得积分10
19秒前
smile发布了新的文献求助10
20秒前
Michael Zhang完成签到 ,获得积分10
20秒前
邓年念发布了新的文献求助10
21秒前
云那边的山发布了新的文献求助300
22秒前
英姑应助EMMA采纳,获得10
23秒前
浮游应助xxx采纳,获得10
24秒前
深情安青应助小王采纳,获得30
24秒前
AIKaikai发布了新的文献求助10
25秒前
25秒前
27秒前
28秒前
怕孤独的聪展完成签到,获得积分10
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452