Genome-wide Mendelian randomization identifies actionable novel drug targets for psychiatric disorders

孟德尔随机化 精神分裂症(面向对象编程) 全基因组关联研究 药物重新定位 双相情感障碍 重性抑郁障碍 表达数量性状基因座 精神科 医学 转录组 药品 生物信息学 生物 单核苷酸多态性 遗传学 基因 遗传变异 认知 基因表达 基因型
作者
Jiewei Liu,Yuqi Cheng,Ming Li,Zhijun Zhang,Tao Li,Xiong‐Jian Luo
出处
期刊:Neuropsychopharmacology [Springer Nature]
卷期号:48 (2): 270-280 被引量:54
标识
DOI:10.1038/s41386-022-01456-5
摘要

Psychiatric disorders impose tremendous economic burden on society and are leading causes of disability worldwide. However, only limited drugs are available for psychiatric disorders and the efficacy of most currently used drugs is poor for many patients. To identify novel therapeutic targets for psychiatric disorders, we performed genome-wide Mendelian randomization analyses by integrating brain-derived molecular quantitative trait loci (mRNA expression and protein abundance quantitative trait loci) of 1263 actionable proteins (targeted by approved drugs or drugs in clinical phase of development) and genetic findings from large-scale genome-wide association studies (GWASs). Using transcriptome data, we identified 25 potential drug targets for psychiatric disorders, including 12 genes for schizophrenia, 7 for bipolar disorder, 7 for depression, and 1 (TIE1) for attention deficit and hyperactivity. We also identified 10 actionable drug targets by using brain proteome data, including 4 (HLA-DRB1, CAMKK2, P2RX7, and MAPK3) for schizophrenia, 1 (PRKCB) for bipolar disorder, 6 (PSMB4, IMPDH2, SERPINC1, GRIA1, P2RX7 and TAOK3) for depression. Of note, MAPK3 and HLA-DRB1 were supported by both transcriptome and proteome-wide MR analyses, suggesting that these two proteins are promising therapeutic targets for schizophrenia. Our study shows the power of integrating large-scale GWAS findings and transcriptomic and proteomic data in identifying actionable drug targets. Besides, our findings prioritize actionable novel drug targets for development of new therapeutics and provide critical drug-repurposing opportunities for psychiatric disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llllll完成签到,获得积分10
刚刚
Ethereal发布了新的文献求助10
刚刚
某博完成签到 ,获得积分10
1秒前
1秒前
慕青应助阔达摩托采纳,获得10
1秒前
1秒前
852应助化身孤岛的鲸采纳,获得10
2秒前
李爱国应助无限曼易采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
大模型应助悦耳听芹采纳,获得10
4秒前
Akim应助无辜的鼠标采纳,获得20
4秒前
ZMl发布了新的文献求助10
4秒前
5秒前
tj发布了新的文献求助10
5秒前
5秒前
5秒前
向北发布了新的文献求助10
5秒前
豆觉子发布了新的文献求助10
6秒前
热情的大地完成签到,获得积分20
6秒前
6秒前
收费完成签到,获得积分10
7秒前
Kiry完成签到 ,获得积分10
7秒前
7秒前
共享精神应助臭臭采纳,获得10
8秒前
BLAOOW完成签到,获得积分10
8秒前
8秒前
8秒前
spc68应助Marshall采纳,获得10
8秒前
9秒前
Xltox发布了新的文献求助10
9秒前
zzz发布了新的文献求助100
9秒前
10秒前
10秒前
鲜艳的慕晴完成签到,获得积分20
10秒前
隐形曼青应助Andy采纳,获得30
10秒前
10秒前
ding应助cjh采纳,获得10
10秒前
脑洞疼应助向北采纳,获得10
11秒前
11秒前
12138完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994