亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale convolutional network with channel attention mechanism for rolling bearing fault diagnosis

机制(生物学) 方位(导航) 断层(地质) 频道(广播) 比例(比率) 计算机科学 人工智能 地质学 计算机网络 地震学 地图学 物理 地理 量子力学
作者
Yajing Huang,Aihua Liao,Dingyu Hu,Wei Shi,Shubin Zheng
出处
期刊:Measurement [Elsevier BV]
卷期号:203: 111935-111935 被引量:103
标识
DOI:10.1016/j.measurement.2022.111935
摘要

• A new CNN-based model enhancement method for bearing fault diagnosis: CA-MCNN. • A new multi-scale extraction method based on pooling layers. • Adaptive parallel feature fusion mechanism based on 1-D convolution. In recent years, deep learning has achieved great success in bearing fault diagnosis due to its robust feature learning capabilities. However, in the actual industry, the diagnostic accuracy would be degraded under varying operation conditions or in noisy environments. To enhance the diagnostic performance in industrial applications, a Multi-scale Convolutional Neural Network with Channel Attention (CA-MCNN) is proposed in this paper. In CA-MCNN, the maximum pooling and average pooling layers are used to extract the multi-scale information of the bearing signals, which increases the dimensions of input. The channel attention mechanism is introduced to increase the convolutional layer feature learning ability by adaptively scoring and assigning weights to the learned features. Moreover, the feature parallel fusion mechanism based on 1-D convolution is applied to capture complementary multi-scale information and reduce network complexity. The performance of CA-MCNN is compared with other fault diagnosis models, and experimental results verify that the CA-MCNN achieves the highest diagnosis accuracy under noisy environments and varying working speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
yangbo666发布了新的文献求助10
7秒前
27秒前
上官若男应助三口一头猪采纳,获得10
32秒前
李健应助谵妄姿态采纳,获得30
35秒前
量子星尘发布了新的文献求助10
36秒前
54秒前
57秒前
深情安青应助yangbo666采纳,获得10
1分钟前
1分钟前
幽默赛君完成签到 ,获得积分10
1分钟前
1分钟前
jueshadi发布了新的文献求助10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
jueshadi完成签到 ,获得积分10
1分钟前
fdj3121发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
KachiRyoji应助风轻萤采纳,获得10
3分钟前
4分钟前
yangbo666发布了新的文献求助10
4分钟前
luluu完成签到,获得积分10
4分钟前
我是老大应助三口一头猪采纳,获得10
4分钟前
4分钟前
yangbohhan完成签到,获得积分10
4分钟前
yangbohhan发布了新的文献求助10
4分钟前
科研通AI5应助yangbohhan采纳,获得10
5分钟前
5分钟前
Nill发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
docyuchi发布了新的文献求助10
5分钟前
Orange应助docyuchi采纳,获得10
5分钟前
docyuchi完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611550
求助须知:如何正确求助?哪些是违规求助? 4017019
关于积分的说明 12435975
捐赠科研通 3698914
什么是DOI,文献DOI怎么找? 2039848
邀请新用户注册赠送积分活动 1072626
科研通“疑难数据库(出版商)”最低求助积分说明 956329