接收机工作特性
磁共振成像
医学
淋巴结
无线电技术
放射科
磁共振弥散成像
淋巴结转移
淋巴
颈淋巴结
转移
癌症
病理
内科学
作者
Yuepeng Wang,Taihui Yu,Zehong Yang,Yuwei Zhou,Ziqin Kang,Yan Wang,Zhiquan Huang
出处
期刊:Head & neck
[Wiley]
日期:2022-09-17
卷期号:44 (12): 2786-2795
被引量:10
摘要
In this study, we use machine learning techniques to develop an efficient preoperative magnetic resonance imaging (MRI) radiomics approach for evaluation of cervical lymph node (CLN) status.After collecting all patients' MRI images, we used CLN radiomic features, the apparent diffusion coefficients (ADC) from diffusion-weighted imaging (DWI), and lymph node short diameter of the CLN to build MRI model to predict the status of the CLN.One hundred and twenty cases met inclusion criteria. The MRI model including the radiomic features, ADC, and lymph node size of the CLN achieved better performance for CLN status prediction with the area under the receiver operating characteristic (ROC) curve (AUC) of 0.83.The multiomic signature of MRI radiomics, ADC, and lymph node size of CLNs has high predictive value for the status of CLNs. This model has provided scientific value to the surgeon regarding cervical lymph nodes before surgery.
科研通智能强力驱动
Strongly Powered by AbleSci AI