Developing an AI-based chatbot for practicing responsive teaching in mathematics

聊天机器人 对话 计算机科学 数学教育 心理学 人工智能 沟通
作者
Dabae Lee,Sheunghyun Yeo
出处
期刊:Computers & education [Elsevier]
卷期号:191: 104646-104646 被引量:76
标识
DOI:10.1016/j.compedu.2022.104646
摘要

Responsive teaching promotes students' mathematical reasoning and positive attitudes toward mathematics. Due to the complexity of the work of teaching, preservice teachers (PSTs) have been provided with approximated opportunities to practice responsive teaching skills in teacher education programs. Although increasing demand for adaptive learning reinforces the need for research on artificial intelligence (AI) in education, there have been few approaches that engaged learners in meaningful interactions. Our goal was to develop an AI-based chatbot that engaged PSTs in an authentic, meaningful, and open-ended teaching situation to enhance PSTs' responsive teaching skills, specifically questioning skills through approximations of practice. The chatbot was designed to act as a virtual student who displayed misconceptions on the topic of fractions. By employing design-based research, we examined 1) design features and structure of the chatbot, 2) coverage of users' input, 3) PSTs' questioning patterns, and 4) users' experiences. Two iterations of design, implementation and evaluation took place in an elementary mathematics education methods course. To build the chatbot we qualitatively analyzed the training data, categorized them into the smallest meaningful intents of users, and prepared corresponding responses to each intent. At the final iteration, the refined chatbot adequately covered PSTs’ questions and provided realistic responses. We found a pattern of PSTs asking similar questions repeatedly in the conversation data. Through multiple iterations, certain design features could lead to improved questioning patterns and user perceptions, including sequential responses, informing responses, and personification. Implications, design features, and limitations are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮雪碧完成签到,获得积分20
刚刚
wenlin发布了新的文献求助10
2秒前
3秒前
3秒前
ww完成签到,获得积分10
3秒前
6秒前
6秒前
7秒前
丘比特应助哈哈采纳,获得10
7秒前
充电宝应助雅琳采纳,获得20
8秒前
英俊的铭应助malele采纳,获得10
9秒前
彭于晏应助活泼甜瓜采纳,获得10
10秒前
碎尘发布了新的文献求助10
10秒前
Miaaaaaa发布了新的文献求助10
10秒前
ZYQ发布了新的文献求助10
11秒前
起风了完成签到 ,获得积分10
12秒前
伶俐蜻蜓完成签到,获得积分10
13秒前
平常艳一完成签到,获得积分10
13秒前
健壮雪碧关注了科研通微信公众号
15秒前
ppp完成签到,获得积分10
15秒前
ppg123应助PWG采纳,获得30
15秒前
ywjkeyantong发布了新的文献求助10
16秒前
2222233发布了新的文献求助10
17秒前
18秒前
21秒前
天麻zyq发布了新的文献求助10
21秒前
李健应助GY00采纳,获得10
22秒前
gnr2000发布了新的文献求助10
22秒前
23秒前
Zrysaa完成签到,获得积分10
23秒前
24秒前
Akim应助神内小大夫采纳,获得10
25秒前
25秒前
26秒前
领导范儿应助惜曦采纳,获得10
27秒前
27秒前
高兴寻雪发布了新的文献求助10
28秒前
TTT发布了新的文献求助10
29秒前
29秒前
风来枫去完成签到,获得积分10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248186
求助须知:如何正确求助?哪些是违规求助? 2891481
关于积分的说明 8267794
捐赠科研通 2559607
什么是DOI,文献DOI怎么找? 1388395
科研通“疑难数据库(出版商)”最低求助积分说明 650743
邀请新用户注册赠送积分活动 627698