作者
Meng-Xue Zhang,Jia Liu,Xiangzhuo Zhang,Shumeng Zhang,Yujie Jiang,Zixuan Yu,Ting Xie,Yuxia Chen,Lingli Chen,Jie Li
摘要
This study aimed to explore the mechanism of Yangxin Tongmai decoction (YXTMD) in the treatment of coronary heart disease (CHD) with blood stasis syndrome (BSS) using network pharmacology and molecular docking, and to verify these results through clinical trials. The active compounds of YXTMD were identified using the Traditional Chinese Medicine Systems Pharmacology database, and the targets of the active compounds were predicted using the SwissTarget Prediction database. The targets of CHD and BSS were predicted using the GeneCards, OMIM, PharmGKB, TTD, and DrugBank databases. The common targets of “herb-disease-phenotype” were obtained using a Venn diagram, then used Cytoscape software 3.8.2 and its plug-in CytoNCA and STRING database to construct the “herb active compounds-common target” and protein–protein interaction networks. R language software and bioconductor plug-in were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. AutoDock was used for the molecular docking analysis. Finally, clinical trials were conducted to confirm the results of network pharmacology. Eighty-three active components were obtained, and the core active components were 5,7,4′-trimethoxyflavone, tetramethoxyluteolin, isosinensetin, sinensetin, and 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one. A total of 140 common targets were identified, and the core targets were EGFR, VEGFA, AKT1, STAT3, TP53, ERBB2, and PIK3CA. Biological processes identified by the GO analysis primarily involved wound healing, regulation of body fluid levels, and vascular process in circulatory system. The cellular components were primarily located in the membrane raft, membrane microdomain, and plasma membrane raft. The primary molecular functions were activity of transmembrane receptor protein kinase, transmembrane receptor protein tyrosine kinase, and protein tyrosine kinase. KEGG analysis showed that the PI3K-Akt signaling pathway was closely related to the treatment of CHD with BSS by YXTMD. Molecular docking results showed that the core active components had a good binding activity with the core targets. The clinical trial results showed that YXTMD improved the BSS scores and decreased the serum levels of total cholesterol and low-density lipoprotein cholesterol. Moreover, the levels of PI3k and AKt mRNA were upregulated and the levels of GSK-3β mRNA were downregulated. YXTMD has multicomponent, multitarget, and multipathway effects in the treatment of CHD with BSS, and its mechanism of action may involve activation of the PI3K-AKt signaling pathway, downregulation of GSK-3β, and mediation of in vivo lipid metabolism-based metabolic processes.