Lightweight target detection for the field flat jujube based on improved YOLOv5

棱锥(几何) 人工智能 特征(语言学) 增采样 计算机科学 特征提取 目标检测 行人检测 卷积(计算机科学) 模式识别(心理学) 领域(数学) 计算机视觉 探测器 算法 图像(数学) 人工神经网络 数学 工程类 电信 哲学 语言学 纯数学 运输工程 行人 几何学
作者
Shi-Lin Li,Shujuan Zhang,Jianxin Xue,Haixia Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107391-107391 被引量:52
标识
DOI:10.1016/j.compag.2022.107391
摘要

The efficient detection of the flat jujube in a complex natural environment has great significance in intelligent agricultural operations. Aiming at the problems of the low detection efficiency of field flat jujubes and complex target detection algorithms that are difficult to deploy on low-cost equipment, an improved lightweight algorithm based on You Only Look Once (YOLOv5) is proposed. First, the method screens for the multiscale detection structure that is suitable for the flat jujube by adjusting the number of layers of target detection, which improves the accuracy of detection and reduces the nuisance parameter. Then, multiscale feature fusion is achieved more efficiently by using the bidirectional feature pyramid network (BiFPN), and the feature extraction capability of the model is further improved by introducing a dual coordinate attention mechanism. Finally, the method reduces the difficulties of the model by introducing depthwise separable convolution and adding a ghost module after upsampling layers. The experimental results showed that the mean average precision (mAP) and model size of the lightweight network reached 97.2 % and 7.1 MB. Compared with the YOLOv5 baseline network, the parameters decreased by 49.15 %, while the mAP increased by 1.8 %. The method further improved algorithm performance and reduced computational cost compared with the mainstream one-stage target detection algorithms of the YOLOv5s, YOLOx_s, YOLOv4, YOLOv3 and single shot multibox detector (SSD). Compared to these algorithms, the mAP of the proposed improved model increased by 1.8 %, 0.9 %, 5.5 %, 6.5 % and 2.9 %, respectively. Meanwhile, the model size was compressed by 49.15 %, 73.99 %, 94.42 %, 94.24 % and 86.69 %, respectively. The improved algorithm has higher detection accuracy, while reducing the calculations and parameters, which reduces the dependence on hardware and provides a reference for deploying automated picking of the field flat jujube.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性雁开发布了新的文献求助10
刚刚
科研痛啊痛2完成签到,获得积分10
刚刚
qianmo发布了新的文献求助10
1秒前
飘逸板栗完成签到,获得积分10
1秒前
1秒前
2秒前
勤劳的星月完成签到,获得积分10
2秒前
鲸妹冲啊完成签到,获得积分10
2秒前
3秒前
三文鱼完成签到,获得积分20
3秒前
4秒前
cao发布了新的文献求助10
4秒前
5秒前
5秒前
无花果应助落寞访波采纳,获得200
6秒前
霜白头发布了新的文献求助10
7秒前
7秒前
7秒前
dandan完成签到,获得积分10
7秒前
Pretrial完成签到 ,获得积分10
8秒前
诗诗发布了新的文献求助10
9秒前
fbpuf完成签到,获得积分10
9秒前
hexiqin完成签到,获得积分10
10秒前
Summer完成签到,获得积分10
10秒前
YQF完成签到,获得积分10
10秒前
丰富紫寒发布了新的文献求助10
11秒前
lalala应助baimiaomuzi采纳,获得20
12秒前
杜嘟嘟发布了新的文献求助10
12秒前
华安完成签到,获得积分10
13秒前
三文鱼发布了新的文献求助10
13秒前
霜白头完成签到,获得积分10
13秒前
14秒前
yuanquan发布了新的文献求助10
14秒前
陈紫君完成签到 ,获得积分10
14秒前
Yu发布了新的文献求助10
15秒前
华仔应助个性雁开采纳,获得10
17秒前
cara应助研友_LJGOan采纳,获得10
17秒前
17秒前
脑洞疼应助zhi采纳,获得10
17秒前
烟花应助陈紫君采纳,获得10
18秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263875
求助须知:如何正确求助?哪些是违规求助? 2904164
关于积分的说明 8328454
捐赠科研通 2574250
什么是DOI,文献DOI怎么找? 1398989
科研通“疑难数据库(出版商)”最低求助积分说明 654403
邀请新用户注册赠送积分活动 632966