Lightweight target detection for the field flat jujube based on improved YOLOv5

棱锥(几何) 人工智能 特征(语言学) 增采样 计算机科学 特征提取 目标检测 行人检测 卷积(计算机科学) 模式识别(心理学) 领域(数学) 计算机视觉 探测器 算法 图像(数学) 人工神经网络 数学 工程类 哲学 语言学 几何学 纯数学 行人 运输工程 电信
作者
Shi-Lin Li,Shujuan Zhang,Jianxin Xue,Haixia Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107391-107391 被引量:52
标识
DOI:10.1016/j.compag.2022.107391
摘要

The efficient detection of the flat jujube in a complex natural environment has great significance in intelligent agricultural operations. Aiming at the problems of the low detection efficiency of field flat jujubes and complex target detection algorithms that are difficult to deploy on low-cost equipment, an improved lightweight algorithm based on You Only Look Once (YOLOv5) is proposed. First, the method screens for the multiscale detection structure that is suitable for the flat jujube by adjusting the number of layers of target detection, which improves the accuracy of detection and reduces the nuisance parameter. Then, multiscale feature fusion is achieved more efficiently by using the bidirectional feature pyramid network (BiFPN), and the feature extraction capability of the model is further improved by introducing a dual coordinate attention mechanism. Finally, the method reduces the difficulties of the model by introducing depthwise separable convolution and adding a ghost module after upsampling layers. The experimental results showed that the mean average precision (mAP) and model size of the lightweight network reached 97.2 % and 7.1 MB. Compared with the YOLOv5 baseline network, the parameters decreased by 49.15 %, while the mAP increased by 1.8 %. The method further improved algorithm performance and reduced computational cost compared with the mainstream one-stage target detection algorithms of the YOLOv5s, YOLOx_s, YOLOv4, YOLOv3 and single shot multibox detector (SSD). Compared to these algorithms, the mAP of the proposed improved model increased by 1.8 %, 0.9 %, 5.5 %, 6.5 % and 2.9 %, respectively. Meanwhile, the model size was compressed by 49.15 %, 73.99 %, 94.42 %, 94.24 % and 86.69 %, respectively. The improved algorithm has higher detection accuracy, while reducing the calculations and parameters, which reduces the dependence on hardware and provides a reference for deploying automated picking of the field flat jujube.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏敏完成签到,获得积分20
1秒前
小小怪发布了新的文献求助10
1秒前
1秒前
搜集达人应助八月十采纳,获得10
3秒前
4秒前
危机的丹雪完成签到,获得积分10
4秒前
4秒前
4秒前
隐形曼青应助仙人掌采纳,获得10
4秒前
4秒前
HHMTT完成签到,获得积分10
4秒前
科研通AI6应助sunyanghu369采纳,获得10
5秒前
qrwyqjbsd应助刘世昇采纳,获得10
6秒前
6秒前
傲娇的凡白关注了科研通微信公众号
6秒前
6秒前
田様应助lulu采纳,获得10
6秒前
6秒前
文艺迎夏完成签到,获得积分10
6秒前
7秒前
Wm200149发布了新的文献求助10
7秒前
7秒前
阿汐发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
阿晓晓完成签到,获得积分10
9秒前
卡卡西发布了新的文献求助10
9秒前
ceeray23应助复杂的夜香采纳,获得10
10秒前
KY应助满满采纳,获得10
10秒前
科研小白发布了新的文献求助10
10秒前
zxzxzx发布了新的文献求助10
10秒前
12秒前
光遇夜明发布了新的文献求助10
12秒前
12秒前
外向蜡烛完成签到,获得积分10
12秒前
精明觅海发布了新的文献求助30
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502