Trends in biomarker research for cancer detection

医学 生物标志物发现 癌症 生物标志物 计算生物学 疾病 鉴定(生物学) 癌症生物标志物 生物信息学 风险分析(工程) 蛋白质组学 生物 病理 基因 内科学 遗传学 植物
作者
Pothur R. Srinivas,Barnett S. Kramer,Sudhir Srivastava
出处
期刊:Lancet Oncology [Elsevier]
卷期号:2 (11): 698-704 被引量:399
标识
DOI:10.1016/s1470-2045(01)00560-5
摘要

A key challenge in cancer control and prevention is detection of the disease as early as possible, enabling effective interventions and therapies to contribute to reduction in mortality and morbidity. Biomarkers are important as molecular signposts of the physiological state of a cell at a specific time. Active genes, their respective protein products, and other organic chemicals made by the cell create these signposts. As a normal cell progresses through the complex process of transformation to a cancerous state, biomarkers could prove vital for the identification of early cancer and people at risk of developing cancer. We discuss current research into the genetic and molecular signatures of cells, including microsatellite instability, hypermethylation and single-nucleotide polymorphisms. The use of genomic and proteomic high-throughput technology platforms to facilitate detection of early cancer by means of biomarkers, and issues on the analysis, validation, and predictive value of biomarkers based on these technologies are also discussed. We report on recent advances in identifying sources of biomarkers that can be accessed by noninvasive techniques, such as buccal-cell isolates, as well as traditional sources such as serum or plasma. We also focus on the work of the Early Detection Research Network at the National Cancer Institute, harnessing expertise from leading national and international institutions, to identify and validate biomarkers for the detection of precancerous and cancerous cells in assessing risk of cancer. The network also has a role in linking discovery to process development, resulting in early detection tests and clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛙蛙发布了新的文献求助10
1秒前
清新的寄翠完成签到 ,获得积分10
2秒前
5秒前
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得200
8秒前
一一应助科研通管家采纳,获得10
8秒前
9秒前
良辰应助科研通管家采纳,获得10
9秒前
9秒前
海鹏完成签到 ,获得积分10
9秒前
调研昵称发布了新的文献求助10
10秒前
10秒前
正在输入中应助XPR采纳,获得10
11秒前
善学以致用应助朗朗采纳,获得10
11秒前
自信鞯发布了新的文献求助10
12秒前
12秒前
peanut发布了新的文献求助10
13秒前
13秒前
小二郎应助蛙蛙采纳,获得10
14秒前
细心的亦凝完成签到 ,获得积分10
14秒前
15秒前
抱大佬大腿完成签到,获得积分20
15秒前
18秒前
孤巷的猫完成签到,获得积分10
18秒前
CodeCraft应助123456采纳,获得10
18秒前
领导范儿应助千千晚星采纳,获得10
19秒前
宁静致远发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293688
求助须知:如何正确求助?哪些是违规求助? 2929649
关于积分的说明 8442871
捐赠科研通 2601748
什么是DOI,文献DOI怎么找? 1420123
科研通“疑难数据库(出版商)”最低求助积分说明 660503
邀请新用户注册赠送积分活动 643104