谷氨酸受体
神经科学
兴奋性突触后电位
神经传递
突触后电位
生物物理学
生物
海马结构
代谢型谷氨酸受体
NMDA受体
抑制性突触后电位
化学
生物化学
受体
作者
Jonathan S. Marvin,Bart G. Borghuis,Lin Tian,Joseph Cichon,Mark T. Harnett,Jasper Akerboom,Andrew Gordus,Sabine L. Renninger,Tsai‐Wen Chen,Cornelia I. Bargmann,Michael B. Orger,Eric R. Schreiter,Jonathan B. Demb,Wen-Biao Gan,Samuel Andrew Hires,Loren L. Looger
出处
期刊:Nature Methods
[Springer Nature]
日期:2013-01-13
卷期号:10 (2): 162-170
被引量:931
摘要
A single-wavelength genetically encoded sensor of extracellular glutamate is reported. The sensor—iGluSnFR—is bright and photostable under both one- and two-photon illumination and is shown to work for in vivo imaging in worms, zebrafish and mice. We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus–evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.
科研通智能强力驱动
Strongly Powered by AbleSci AI