Classification of three varieties of peach fruit using artificial neural network assisted with image processing techniques.

栽培 机器视觉 果园 图像处理 人工神经网络 人工智能 农业 分级(工程) 计算机科学 园艺 生物 图像(数学) 生态学
作者
Amir Alipasandi,Hosein Ghaffari,Saman Zohrabi Alibeyglu
出处
期刊:International Journal of Agronomy and Plant Production 卷期号:4 (9): 2179-2186 被引量:24
摘要

Peaches are rich in a variety of vitamins and minerals such as carbohydrates, organic acids, pigments, phenolics, vitamins, volatiles, antioxidants and little amounts of proteins and lipids. Iran was Seventh country of the peach producers in the world in 2010. Quality is one of the important factors in marketing of agricultural products. Grading machines have great importance in the quality inspection systems. Most of the current grading machines operate based on machine vision systems to detect blemishes and defects of products, where one image or more are taken for each individual object and the results of processing will decide the quality of the object. Grading and sorting of agricultural products using machine vision in conjunction with pattern recognition techniques, including neural networks, offers many advantages over the conventional optical or mechanical sorting devices. This paper aims to introduce a system that is using machine vision algorithms and Neural Network classifier to classify three varieties of peach fruit. Three cultivars, namely, Anjiri peach cultivar and Shalil Nectarine cultivar, varieties of Iran and Elberta peach cultivar variety of United states were randomly handpicked in two stage of growth, immature and mature on 30 July 2011 and 30 agues 2011 from an orchard located at the Miandoab, west Azerbaijan, Iran, and for each peach cultivar and stage of growth 45 fruits were randomly selected from picked peaches. Image processing technology in the agricultural research has made significant development. An image-capturing system was designed to provide an enclosed and uniform light illumination and to obtain standard images from the samples. The images were sent via a USB capture device to a computer provided with image acquisition and processing toolboxes of MATLAB software (Version R2011a, The Math Works Inc., MA, USA) to visualize, acquire and process the images directly from the computer. Some qualitative information is extracted from the objects to be analyzed in the images. This information was used as inputs to the algorithms for classifying the objects into different categories. In this study feature vector that consider as network input consist of 12 components of color spaces and three components of shape features. After network was trained, confusion matrices for mature and immature fruits were obtained. Total classification accuracy was 98.5% and 99.3% for mature and immature fruits respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜杜完成签到,获得积分10
刚刚
NexusExplorer应助新的心跳采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
JamesPei应助小可采纳,获得10
2秒前
粗暴的醉卉完成签到,获得积分10
2秒前
2秒前
科研通AI5应助stt采纳,获得10
3秒前
sunzhiyu233发布了新的文献求助10
4秒前
4秒前
缓缓地安静关注了科研通微信公众号
5秒前
5秒前
送外卖了完成签到,获得积分10
5秒前
Blue_Pig完成签到,获得积分10
5秒前
Orange应助feng采纳,获得10
5秒前
6秒前
考虑考虑发布了新的文献求助10
6秒前
毛慢慢发布了新的文献求助10
6秒前
阿宝发布了新的文献求助10
6秒前
深情安青应助通~采纳,获得10
6秒前
Percy完成签到 ,获得积分10
6秒前
xiuxiu_27发布了新的文献求助10
7秒前
顾矜应助千里采纳,获得10
7秒前
神勇的雅香应助妮儿采纳,获得10
7秒前
qi完成签到,获得积分10
8秒前
哒哒发布了新的文献求助10
8秒前
知行完成签到,获得积分10
8秒前
8秒前
9秒前
Yenom发布了新的文献求助10
9秒前
10秒前
滴滴发布了新的文献求助10
11秒前
心灵美发卡完成签到,获得积分10
11秒前
科目三应助浩浩大人采纳,获得10
12秒前
考虑考虑完成签到,获得积分10
12秒前
彪壮的刺猬完成签到,获得积分10
13秒前
杏花饼完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759