Classification of three varieties of peach fruit using artificial neural network assisted with image processing techniques.

栽培 机器视觉 果园 图像处理 人工神经网络 人工智能 农业 分级(工程) 计算机科学 园艺 生物 图像(数学) 生态学
作者
Amir Alipasandi,Hosein Ghaffari,Saman Zohrabi Alibeyglu
出处
期刊:International Journal of Agronomy and Plant Production 卷期号:4 (9): 2179-2186 被引量:24
摘要

Peaches are rich in a variety of vitamins and minerals such as carbohydrates, organic acids, pigments, phenolics, vitamins, volatiles, antioxidants and little amounts of proteins and lipids. Iran was Seventh country of the peach producers in the world in 2010. Quality is one of the important factors in marketing of agricultural products. Grading machines have great importance in the quality inspection systems. Most of the current grading machines operate based on machine vision systems to detect blemishes and defects of products, where one image or more are taken for each individual object and the results of processing will decide the quality of the object. Grading and sorting of agricultural products using machine vision in conjunction with pattern recognition techniques, including neural networks, offers many advantages over the conventional optical or mechanical sorting devices. This paper aims to introduce a system that is using machine vision algorithms and Neural Network classifier to classify three varieties of peach fruit. Three cultivars, namely, Anjiri peach cultivar and Shalil Nectarine cultivar, varieties of Iran and Elberta peach cultivar variety of United states were randomly handpicked in two stage of growth, immature and mature on 30 July 2011 and 30 agues 2011 from an orchard located at the Miandoab, west Azerbaijan, Iran, and for each peach cultivar and stage of growth 45 fruits were randomly selected from picked peaches. Image processing technology in the agricultural research has made significant development. An image-capturing system was designed to provide an enclosed and uniform light illumination and to obtain standard images from the samples. The images were sent via a USB capture device to a computer provided with image acquisition and processing toolboxes of MATLAB software (Version R2011a, The Math Works Inc., MA, USA) to visualize, acquire and process the images directly from the computer. Some qualitative information is extracted from the objects to be analyzed in the images. This information was used as inputs to the algorithms for classifying the objects into different categories. In this study feature vector that consider as network input consist of 12 components of color spaces and three components of shape features. After network was trained, confusion matrices for mature and immature fruits were obtained. Total classification accuracy was 98.5% and 99.3% for mature and immature fruits respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的夜香完成签到,获得积分10
1秒前
Chimmy发布了新的文献求助10
2秒前
YAO发布了新的文献求助10
2秒前
water应助薛定谔的猫采纳,获得10
3秒前
HonamC发布了新的文献求助10
4秒前
5秒前
6秒前
8秒前
10秒前
坚定的可愁完成签到,获得积分10
11秒前
阿克66发布了新的文献求助10
12秒前
12秒前
12秒前
56565发布了新的文献求助10
12秒前
归尘发布了新的文献求助10
12秒前
13秒前
HonamC完成签到,获得积分10
13秒前
Gabriella完成签到,获得积分10
13秒前
郭郭完成签到,获得积分10
14秒前
遗憾完成签到,获得积分20
14秒前
幸福大白发布了新的文献求助10
15秒前
核桃发布了新的文献求助10
15秒前
15秒前
16秒前
研友_VZG7GZ应助Chimmy采纳,获得10
16秒前
17秒前
17秒前
思源应助Arzu采纳,获得10
19秒前
郭郭发布了新的文献求助10
20秒前
幸福大白发布了新的文献求助10
21秒前
21秒前
刘枫其发布了新的文献求助10
22秒前
小小鱼完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
look完成签到,获得积分10
26秒前
zhaoyichun发布了新的文献求助10
27秒前
27秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712