Classification of three varieties of peach fruit using artificial neural network assisted with image processing techniques.

栽培 机器视觉 果园 图像处理 人工神经网络 人工智能 农业 分级(工程) 计算机科学 园艺 生物 图像(数学) 生态学
作者
Amir Alipasandi,Hosein Ghaffari,Saman Zohrabi Alibeyglu
出处
期刊:International Journal of Agronomy and Plant Production 卷期号:4 (9): 2179-2186 被引量:24
摘要

Peaches are rich in a variety of vitamins and minerals such as carbohydrates, organic acids, pigments, phenolics, vitamins, volatiles, antioxidants and little amounts of proteins and lipids. Iran was Seventh country of the peach producers in the world in 2010. Quality is one of the important factors in marketing of agricultural products. Grading machines have great importance in the quality inspection systems. Most of the current grading machines operate based on machine vision systems to detect blemishes and defects of products, where one image or more are taken for each individual object and the results of processing will decide the quality of the object. Grading and sorting of agricultural products using machine vision in conjunction with pattern recognition techniques, including neural networks, offers many advantages over the conventional optical or mechanical sorting devices. This paper aims to introduce a system that is using machine vision algorithms and Neural Network classifier to classify three varieties of peach fruit. Three cultivars, namely, Anjiri peach cultivar and Shalil Nectarine cultivar, varieties of Iran and Elberta peach cultivar variety of United states were randomly handpicked in two stage of growth, immature and mature on 30 July 2011 and 30 agues 2011 from an orchard located at the Miandoab, west Azerbaijan, Iran, and for each peach cultivar and stage of growth 45 fruits were randomly selected from picked peaches. Image processing technology in the agricultural research has made significant development. An image-capturing system was designed to provide an enclosed and uniform light illumination and to obtain standard images from the samples. The images were sent via a USB capture device to a computer provided with image acquisition and processing toolboxes of MATLAB software (Version R2011a, The Math Works Inc., MA, USA) to visualize, acquire and process the images directly from the computer. Some qualitative information is extracted from the objects to be analyzed in the images. This information was used as inputs to the algorithms for classifying the objects into different categories. In this study feature vector that consider as network input consist of 12 components of color spaces and three components of shape features. After network was trained, confusion matrices for mature and immature fruits were obtained. Total classification accuracy was 98.5% and 99.3% for mature and immature fruits respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小毛发布了新的文献求助10
1秒前
几酌应助牙牙采纳,获得20
2秒前
贪学傲菡完成签到,获得积分10
2秒前
半夏发布了新的文献求助10
2秒前
小木虫完成签到,获得积分10
3秒前
传奇3应助兰禅子采纳,获得10
3秒前
大意的晓亦完成签到 ,获得积分10
3秒前
3秒前
KY2022完成签到,获得积分10
4秒前
4秒前
王兴雨完成签到,获得积分10
4秒前
清脆大树完成签到,获得积分10
5秒前
6秒前
ff完成签到 ,获得积分10
7秒前
7秒前
KY2022发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
阎听筠发布了新的文献求助20
9秒前
坚强的小蘑菇完成签到,获得积分10
9秒前
9秒前
wanghua完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助风中听安采纳,获得10
10秒前
xyyl完成签到 ,获得积分10
11秒前
幸运的科研小狗完成签到,获得积分10
12秒前
王月发布了新的文献求助10
12秒前
13秒前
vippp发布了新的文献求助10
13秒前
CipherSage应助张小愚采纳,获得10
13秒前
木子弓长发布了新的文献求助20
13秒前
Hey发布了新的文献求助10
14秒前
Wing完成签到 ,获得积分10
15秒前
大白发布了新的文献求助10
15秒前
鱿鱼完成签到,获得积分10
18秒前
AU发布了新的文献求助10
19秒前
赘婿应助自然枕头采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567