Classification of three varieties of peach fruit using artificial neural network assisted with image processing techniques.

栽培 机器视觉 果园 图像处理 人工神经网络 人工智能 农业 分级(工程) 计算机科学 园艺 生物 图像(数学) 生态学
作者
Amir Alipasandi,Hosein Ghaffari,Saman Zohrabi Alibeyglu
出处
期刊:International Journal of Agronomy and Plant Production 卷期号:4 (9): 2179-2186 被引量:24
摘要

Peaches are rich in a variety of vitamins and minerals such as carbohydrates, organic acids, pigments, phenolics, vitamins, volatiles, antioxidants and little amounts of proteins and lipids. Iran was Seventh country of the peach producers in the world in 2010. Quality is one of the important factors in marketing of agricultural products. Grading machines have great importance in the quality inspection systems. Most of the current grading machines operate based on machine vision systems to detect blemishes and defects of products, where one image or more are taken for each individual object and the results of processing will decide the quality of the object. Grading and sorting of agricultural products using machine vision in conjunction with pattern recognition techniques, including neural networks, offers many advantages over the conventional optical or mechanical sorting devices. This paper aims to introduce a system that is using machine vision algorithms and Neural Network classifier to classify three varieties of peach fruit. Three cultivars, namely, Anjiri peach cultivar and Shalil Nectarine cultivar, varieties of Iran and Elberta peach cultivar variety of United states were randomly handpicked in two stage of growth, immature and mature on 30 July 2011 and 30 agues 2011 from an orchard located at the Miandoab, west Azerbaijan, Iran, and for each peach cultivar and stage of growth 45 fruits were randomly selected from picked peaches. Image processing technology in the agricultural research has made significant development. An image-capturing system was designed to provide an enclosed and uniform light illumination and to obtain standard images from the samples. The images were sent via a USB capture device to a computer provided with image acquisition and processing toolboxes of MATLAB software (Version R2011a, The Math Works Inc., MA, USA) to visualize, acquire and process the images directly from the computer. Some qualitative information is extracted from the objects to be analyzed in the images. This information was used as inputs to the algorithms for classifying the objects into different categories. In this study feature vector that consider as network input consist of 12 components of color spaces and three components of shape features. After network was trained, confusion matrices for mature and immature fruits were obtained. Total classification accuracy was 98.5% and 99.3% for mature and immature fruits respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时衍完成签到,获得积分10
1秒前
上官若男应助lurongjun采纳,获得10
1秒前
共享精神应助tong采纳,获得10
1秒前
1秒前
lijunhao发布了新的文献求助10
1秒前
1秒前
lijshu发布了新的文献求助50
2秒前
2秒前
科目三应助Maestro_S采纳,获得10
3秒前
ODD完成签到,获得积分20
4秒前
4秒前
肖鹏完成签到,获得积分20
4秒前
Namj发布了新的文献求助10
5秒前
木头完成签到,获得积分10
6秒前
7秒前
7秒前
yongjiang应助熊猫小肿采纳,获得10
7秒前
洋洋完成签到,获得积分10
7秒前
何香稳发布了新的文献求助10
7秒前
8秒前
HightLight发布了新的文献求助10
8秒前
炙热尔烟发布了新的文献求助10
8秒前
9秒前
9秒前
copyj发布了新的文献求助10
9秒前
9秒前
11秒前
lurongjun发布了新的文献求助10
11秒前
Janisa发布了新的文献求助10
11秒前
12秒前
小涛涛发布了新的文献求助10
13秒前
丸橙完成签到,获得积分10
13秒前
weixiao发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
丸橙发布了新的文献求助10
16秒前
qqqq发布了新的文献求助10
16秒前
16秒前
dameng完成签到 ,获得积分10
16秒前
小八统治世界完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577556
求助须知:如何正确求助?哪些是违规求助? 4662649
关于积分的说明 14742832
捐赠科研通 4603346
什么是DOI,文献DOI怎么找? 2526283
邀请新用户注册赠送积分活动 1496084
关于科研通互助平台的介绍 1465546