超级电容器
纳米技术
范德瓦尔斯力
材料科学
电导率
电极
氮化钒
石墨烯
化学
电容
导电体
复合材料
图层(电子)
氮化物
分子
有机化学
物理化学
作者
Jun Feng,Xu Sun,Changzheng Wu,Lele Peng,Chenwen Lin,Shuanglin Hu,Jinlong Yang,Yi Xie
摘要
With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS2) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S–V–S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS2 flakes into ultrathin VS2 nanosheets stacked with less than five S–V–S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS2 thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm2 was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI