DETECTION OF HUMAN STRESS USING SHORT-TERM ECG AND HRV SIGNALS

心率变异性 语音识别 人工智能 计算机科学 模式识别(心理学) 小波 预处理器 信号(编程语言) 节拍(声学) 心率 声学 医学 血压 物理 放射科 程序设计语言
作者
P. Karthikeyan,M. Murugappan,Sazali Yaacob
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
卷期号:13 (02): 1350038-1350038 被引量:75
标识
DOI:10.1142/s0219519413500383
摘要

This paper introduces a method for resolving the problem of human stress detection through short-term (less than 5 min) electrocardiogram (ECG) and heart rate variability (HRV) signals. The explored methodology helps to improve the stress detection rate and reliability through multiple evidences originated in same sensor. In this work, stress-inducing protocol, data acquisition, preprocessing, feature extraction and classification are the major steps involved to detect the stress. In total, 60 subjects (30 males and 30 females) participated in the Stroop color word-based stress-inducing task and ECG signal was acquired simultaneously. The wavelet denoising algorithm was applied to remove high frequency, baseline wander and power line noises. Discrete wavelet transform (DWT)-based heart rate (HR) detection algorithm is used for deriving HRV signal from the preprocessed ECG signal. The ectopic beat removal method is employed to eliminate the ectopic beat and noise peaks in the HRV signal. In order to detect the stress, the issue of uneven sampling with the HRV signal has been successfully rectified using the Lomb-Scargle periodogram (LSP). The application of LSP in short-term HRV signals (32 s), uneven sampling issue, and power spectral information issue has been rectified and the trustworthiness of the short-term HRV signal has been proved by hypothesis as well as experimental results. Theoretical analysis suggested that a minimum 25 s of online or offline ECG data is required to analyze the autonomous nervous system (ANS) activity related to stress. In addition to the HRV signal, ECG-based stress assessment has been proposed to detect the stress through optimum features using fast Fourier transform (FFT). Various features extracted from the ECG and HRV signal have been classified into normal and stress using PNN and kNN classifiers with different smoothing factor and k values. The experimental results indicate that the proposed methodology for short-term ECG and HRV signal can achieve the overall average classification accuracy of 91.66% and 94.66% in the subject-independent mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助SRY采纳,获得10
刚刚
Running完成签到 ,获得积分10
2秒前
4秒前
唐唐发布了新的文献求助10
4秒前
超帅方盒完成签到,获得积分10
5秒前
虎妞完成签到 ,获得积分10
6秒前
Lyw完成签到 ,获得积分10
8秒前
NexusExplorer应助糖果反馈采纳,获得10
11秒前
小小的梦想完成签到,获得积分10
12秒前
perfect完成签到 ,获得积分10
12秒前
顾矜应助三硝基甲苯采纳,获得10
15秒前
六元一斤虾完成签到 ,获得积分10
16秒前
egoistMM完成签到,获得积分10
18秒前
Tongtong完成签到,获得积分10
19秒前
lylyspeechless完成签到,获得积分10
20秒前
留胡子的紫槐完成签到,获得积分10
21秒前
21秒前
JY'完成签到,获得积分10
21秒前
碎冰冰完成签到,获得积分10
22秒前
sln完成签到,获得积分10
22秒前
23秒前
五十完成签到,获得积分10
27秒前
27秒前
糖果反馈发布了新的文献求助10
27秒前
LiYong完成签到,获得积分10
30秒前
Yinbo发布了新的文献求助10
30秒前
wlywdb完成签到,获得积分10
30秒前
ybheart发布了新的文献求助10
31秒前
逝水无痕完成签到,获得积分10
31秒前
111完成签到,获得积分10
31秒前
幽默的妍完成签到 ,获得积分10
33秒前
Owen应助唐唐采纳,获得10
33秒前
Youmad完成签到 ,获得积分10
34秒前
duduying完成签到,获得积分10
34秒前
清欢完成签到 ,获得积分10
34秒前
天才小能喵完成签到 ,获得积分0
36秒前
缓慢的开山完成签到 ,获得积分10
37秒前
LYH完成签到,获得积分10
39秒前
xr发布了新的文献求助10
39秒前
King强完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565253
求助须知:如何正确求助?哪些是违规求助? 4650097
关于积分的说明 14689825
捐赠科研通 4591984
什么是DOI,文献DOI怎么找? 2519415
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159