DETECTION OF HUMAN STRESS USING SHORT-TERM ECG AND HRV SIGNALS

心率变异性 语音识别 人工智能 计算机科学 模式识别(心理学) 小波 预处理器 信号(编程语言) 节拍(声学) 心率 声学 医学 血压 物理 放射科 程序设计语言
作者
P. Karthikeyan,M. Murugappan,Sazali Yaacob
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
卷期号:13 (02): 1350038-1350038 被引量:75
标识
DOI:10.1142/s0219519413500383
摘要

This paper introduces a method for resolving the problem of human stress detection through short-term (less than 5 min) electrocardiogram (ECG) and heart rate variability (HRV) signals. The explored methodology helps to improve the stress detection rate and reliability through multiple evidences originated in same sensor. In this work, stress-inducing protocol, data acquisition, preprocessing, feature extraction and classification are the major steps involved to detect the stress. In total, 60 subjects (30 males and 30 females) participated in the Stroop color word-based stress-inducing task and ECG signal was acquired simultaneously. The wavelet denoising algorithm was applied to remove high frequency, baseline wander and power line noises. Discrete wavelet transform (DWT)-based heart rate (HR) detection algorithm is used for deriving HRV signal from the preprocessed ECG signal. The ectopic beat removal method is employed to eliminate the ectopic beat and noise peaks in the HRV signal. In order to detect the stress, the issue of uneven sampling with the HRV signal has been successfully rectified using the Lomb-Scargle periodogram (LSP). The application of LSP in short-term HRV signals (32 s), uneven sampling issue, and power spectral information issue has been rectified and the trustworthiness of the short-term HRV signal has been proved by hypothesis as well as experimental results. Theoretical analysis suggested that a minimum 25 s of online or offline ECG data is required to analyze the autonomous nervous system (ANS) activity related to stress. In addition to the HRV signal, ECG-based stress assessment has been proposed to detect the stress through optimum features using fast Fourier transform (FFT). Various features extracted from the ECG and HRV signal have been classified into normal and stress using PNN and kNN classifiers with different smoothing factor and k values. The experimental results indicate that the proposed methodology for short-term ECG and HRV signal can achieve the overall average classification accuracy of 91.66% and 94.66% in the subject-independent mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sm关注了科研通微信公众号
1秒前
不要慌完成签到 ,获得积分10
2秒前
3秒前
4秒前
小小小乐完成签到 ,获得积分10
5秒前
我心向明月完成签到,获得积分10
7秒前
笔调完成签到,获得积分10
7秒前
淡淡依霜完成签到 ,获得积分10
9秒前
英吉利25发布了新的文献求助20
9秒前
lu完成签到,获得积分10
10秒前
标致忆丹发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
twinkle完成签到 ,获得积分10
11秒前
sally_5202完成签到 ,获得积分10
16秒前
16秒前
xtutang完成签到,获得积分10
16秒前
zmx123123完成签到,获得积分10
17秒前
18秒前
丙队长完成签到,获得积分10
18秒前
18秒前
曹沛岚完成签到,获得积分10
20秒前
蛋花肉圆汤完成签到,获得积分10
20秒前
LDC完成签到,获得积分10
21秒前
chen完成签到,获得积分10
21秒前
24秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
小九完成签到,获得积分10
24秒前
sm发布了新的文献求助10
24秒前
26秒前
温馨完成签到 ,获得积分10
27秒前
1cool发布了新的文献求助10
29秒前
SciEngineerX完成签到,获得积分10
29秒前
Xuz完成签到 ,获得积分10
30秒前
31秒前
23完成签到 ,获得积分10
31秒前
确幸完成签到,获得积分10
31秒前
绵羊座鸭梨完成签到 ,获得积分10
34秒前
科研通AI2S应助kli采纳,获得10
34秒前
健忘的访文完成签到,获得积分10
35秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882