DETECTION OF HUMAN STRESS USING SHORT-TERM ECG AND HRV SIGNALS

心率变异性 语音识别 人工智能 计算机科学 模式识别(心理学) 小波 预处理器 信号(编程语言) 节拍(声学) 心率 声学 医学 血压 物理 放射科 程序设计语言
作者
P. Karthikeyan,M. Murugappan,Sazali Yaacob
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
卷期号:13 (02): 1350038-1350038 被引量:75
标识
DOI:10.1142/s0219519413500383
摘要

This paper introduces a method for resolving the problem of human stress detection through short-term (less than 5 min) electrocardiogram (ECG) and heart rate variability (HRV) signals. The explored methodology helps to improve the stress detection rate and reliability through multiple evidences originated in same sensor. In this work, stress-inducing protocol, data acquisition, preprocessing, feature extraction and classification are the major steps involved to detect the stress. In total, 60 subjects (30 males and 30 females) participated in the Stroop color word-based stress-inducing task and ECG signal was acquired simultaneously. The wavelet denoising algorithm was applied to remove high frequency, baseline wander and power line noises. Discrete wavelet transform (DWT)-based heart rate (HR) detection algorithm is used for deriving HRV signal from the preprocessed ECG signal. The ectopic beat removal method is employed to eliminate the ectopic beat and noise peaks in the HRV signal. In order to detect the stress, the issue of uneven sampling with the HRV signal has been successfully rectified using the Lomb-Scargle periodogram (LSP). The application of LSP in short-term HRV signals (32 s), uneven sampling issue, and power spectral information issue has been rectified and the trustworthiness of the short-term HRV signal has been proved by hypothesis as well as experimental results. Theoretical analysis suggested that a minimum 25 s of online or offline ECG data is required to analyze the autonomous nervous system (ANS) activity related to stress. In addition to the HRV signal, ECG-based stress assessment has been proposed to detect the stress through optimum features using fast Fourier transform (FFT). Various features extracted from the ECG and HRV signal have been classified into normal and stress using PNN and kNN classifiers with different smoothing factor and k values. The experimental results indicate that the proposed methodology for short-term ECG and HRV signal can achieve the overall average classification accuracy of 91.66% and 94.66% in the subject-independent mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘科研完成签到,获得积分10
刚刚
kosmos完成签到,获得积分10
1秒前
1秒前
Khaos_0929完成签到,获得积分10
2秒前
3秒前
zhangmeimei完成签到,获得积分10
3秒前
化学镁铝完成签到,获得积分10
4秒前
5秒前
yyyyyy完成签到 ,获得积分10
6秒前
Satan发布了新的文献求助10
6秒前
7秒前
科研通AI6.1应助tony采纳,获得10
7秒前
怜梦完成签到,获得积分10
7秒前
cookie完成签到,获得积分10
8秒前
conveyor6发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得30
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得30
10秒前
Rollei应助科研通管家采纳,获得10
10秒前
Rollei应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
李健应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得30
10秒前
科目三应助科研通管家采纳,获得30
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
10秒前
大个应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734559
求助须知:如何正确求助?哪些是违规求助? 5354867
关于积分的说明 15327244
捐赠科研通 4879200
什么是DOI,文献DOI怎么找? 2621736
邀请新用户注册赠送积分活动 1570891
关于科研通互助平台的介绍 1527707