High-Capacity Si Microwire Anode with Enhanced Conductivity

阳极 材料科学 电压 石墨 电导率 涂层 复合材料 集电器 电流(流体) 开裂 光电子学 电气工程 电极 化学 电解质 物理化学 工程类
作者
Enrique Quiroga‐González,H. Föll
出处
期刊:Meeting abstracts 卷期号:MA2014-02 (6): 490-490
标识
DOI:10.1149/ma2014-02/6/490
摘要

As a potential anode for Li ion batteries silicon has a theoretical capacity of 4200 mAh/g, more than ten times that of standard graphite anodes with a capacity of 370 mAh/g. Microstructured Si in wire-shape overcomes problems caused by its four-fold volume expansion during its lithiation, allowing capacity stability over hundreds of cycles [1]. We have developed a new concept of Si microwire anodes that consists of an array of Si microwires embedded at one end in a Cu current collector [2]. The capacity of the anodes is very stable over 100 cycles [3], and breaks all the records when considering the capacity per area (mAh/cm 2 ) [4]. The mechanical stability of the wires is surprising, since their diameter (» 1 µm) is far larger than what was deemed reasonable (< 300 nm) for avoiding cracking. However, it has been observed that the resistance of the wires is large and may increase after tens of cycles, probably due to a porosification process. Due to the large resistance the voltage limits of the anode (at which the galvanostatic charging/discharging is stopped) are reached fast. The anodes are cycled in a standard way, changing to a potentiostatic mode once the voltage limits are reached, stopping until the current decreases to 10 % of the initial value. The potentiostatic mode is slower than the galvanostatic one, thus the longer the galvanostatic mode lasts, the faster is the cycling. For many applications it is desired to have the possibility of charging/discharging fast. By chemically coating the wires with a thin granular Cu film of about 20 nm (see Fig.1a), their resistance is decreased. The galvanostatic lithiation is low just for the first cycle, and then it is greatly enhanced from the second cycle (see Fig.1b). The low value for the first cycle occurs because during the first cycle the wires are amorphized, and a solid electrolyte interface is formed, which are slow processes. When the wires are uncoated, it takes more cycles to reach a high value. Further details of the enhancement of conductivity and its effect on the performance of the anodes will be shown in the full paper and at the conference. [1] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol ., 3, 31 (2008). [2] E. Quiroga-González, E. Ossei-Wusu, J. Carstensen, H. Föll, J. Electrochem. Soc ., 158, E119 (2011). [3] E. Quiroga-González, J. Carstensen, H. Föll, Electrochim. Acta , 101, 93 (2013). [4] E. Quiroga-González, J. Carstensen, H. Föll, Energies , 6, 5145 (2013).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到 ,获得积分10
刚刚
抱住仙人球应助缥缈采纳,获得10
1秒前
2秒前
赵明君发布了新的文献求助10
3秒前
小羊完成签到,获得积分10
3秒前
斯文谷秋发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
5秒前
李谢谢发布了新的文献求助10
5秒前
5秒前
8秒前
8秒前
那年完成签到,获得积分10
8秒前
sxs发布了新的文献求助30
9秒前
Joker发布了新的文献求助10
9秒前
小马甲应助第三方斯蒂芬采纳,获得10
10秒前
流浪发布了新的文献求助10
10秒前
10秒前
小喵发布了新的文献求助10
11秒前
小R完成签到 ,获得积分10
11秒前
13秒前
Lucky小M发布了新的文献求助10
14秒前
朵朵发布了新的文献求助10
14秒前
16秒前
xuhang完成签到,获得积分10
17秒前
Orange应助李善聪采纳,获得10
18秒前
斯文谷秋发布了新的文献求助10
19秒前
21秒前
sxs完成签到,获得积分20
21秒前
lmr应助Spring采纳,获得10
22秒前
Chridy发布了新的文献求助10
22秒前
JOY完成签到 ,获得积分10
24秒前
毛豆应助小喵采纳,获得10
24秒前
24秒前
RJ应助开放迎天采纳,获得10
25秒前
充电宝应助寒冷乌冬面采纳,获得10
25秒前
25秒前
25秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Experimental investigation of the mechanics of explosive welding by means of a liquid analogue 1060
Die Elektra-Partitur von Richard Strauss : ein Lehrbuch für die Technik der dramatischen Komposition 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 600
大平正芳: 「戦後保守」とは何か 550
Sustainability in ’Tides Chemistry 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3007314
求助须知:如何正确求助?哪些是违规求助? 2666740
关于积分的说明 7232038
捐赠科研通 2303932
什么是DOI,文献DOI怎么找? 1221678
科研通“疑难数据库(出版商)”最低求助积分说明 595253
版权声明 593410