Plant Freezing and Damage

生物 过冷 抗冻性 脱水 木质部 抗冻蛋白 凝结 冰的形成 冰核 冰点 低温生物学 冻结行为 开枪 冰晶 干燥 生物物理学 细胞生物学 植物 低温保存 成核 生物化学 化学 热力学 地质学 基因 光学 神经科学 扁桃形结构 大气科学 恐惧条件反射 有机化学 物理 胚胎
作者
Ruth Pearce
出处
期刊:Annals of Botany [Oxford University Press]
卷期号:87 (4): 417-424 被引量:532
标识
DOI:10.1006/anbo.2000.1352
摘要

Imaging methods are giving new insights into plant freezing and the consequent damage that affects survival and distribution of both wild and crop plants. Ice can enter plants through stomata and hydathodes. Intrinsic nucleation of freezing can also occur. The initial growth of ice through the plant can be as rapid as 40 mm s −1 , although barriers can limit this growth. Only a small fraction of plant water is changed to ice in this first freezing event. Nevertheless, this first rapid growth of ice is of key importance because it can initiate further, potentially lethal, freezing at any site that it reaches. Some organs and tissues avoid freezing by supercooling. However, supercooled parts of buds can dehydrate progressively, indicating that avoidance of freezing-induced dehydration by deep supercooling is only partial. Extracellular ice forms in freezing-intolerant as well as freezing-tolerant species and causes cellular dehydration. The single most important cause of freezing-damage is when this dehydration exceeds what cells can tolerate. In freezing-adapted species, lethal freezing-induced dehydration causes damage to cell membranes. In specific cases, other factors may also cause damage, examples being cell death when limits to deep supercooling are exceeded, and death of shoots when freezing-induced embolisms in xylem vessels persist. Extracellular masses of ice can damage the structure of organs but this may be tolerated, as in extra-organ freezing of buds. Experiments to genetically engineer expression of fish antifreeze proteins have not improved freezing tolerance of sensitive species. A better strategy may be to confer tolerance of cellular dehydration. Copyright 2001 Annals of Botany Company
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的枫完成签到,获得积分20
刚刚
云一完成签到,获得积分10
刚刚
刚刚
Dee发布了新的文献求助10
1秒前
学无止境完成签到,获得积分10
1秒前
zzzzzzt完成签到,获得积分10
1秒前
独特忆之完成签到,获得积分10
2秒前
温柔的枫发布了新的文献求助10
3秒前
堪萧完成签到,获得积分10
3秒前
jackieshark完成签到,获得积分10
3秒前
小海豚发布了新的文献求助10
4秒前
ypz发布了新的文献求助10
4秒前
困了就睡完成签到,获得积分10
4秒前
詹密完成签到,获得积分10
4秒前
4秒前
li发布了新的文献求助10
5秒前
5秒前
Kk发布了新的文献求助10
5秒前
陈小强x完成签到,获得积分10
7秒前
8秒前
春鸮鸟完成签到 ,获得积分10
8秒前
8秒前
9秒前
orixero应助丁丁采纳,获得10
9秒前
在水一方应助林登万采纳,获得10
9秒前
田様应助温柔的枫采纳,获得10
9秒前
9秒前
脑洞疼应助易寒采纳,获得10
10秒前
10秒前
云轩完成签到,获得积分10
10秒前
虚幻忆南发布了新的文献求助10
10秒前
朴素千亦完成签到,获得积分10
11秒前
137发布了新的文献求助10
12秒前
~~发布了新的文献求助10
12秒前
栗子鱼发布了新的文献求助10
13秒前
俭朴涫发布了新的文献求助10
13秒前
monly完成签到,获得积分0
13秒前
13秒前
Rr发布了新的文献求助10
14秒前
汉堡包应助Dee采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916