亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodel ensembles of wheat growth: many models are better than one

环境科学
作者
Pierre Martre,Daniel Wallach,Senthold Asseng,Frank Ewert,James W. Jones,Reimund P. Rötter,Kenneth J. Boote,Alex C. Ruane,Peter J. Thorburn,Davide Cammarano,Jerry L. Hatfield,Cynthia Rosenzweig,Pramod Aggarwal,Carlos Angulo,Bruno Basso,Patrick Bertuzzi,Christian Biernath,Nadine Brisson,Andrew J. Challinor,Jordi Doltra
出处
期刊:Global Change Biology [Wiley]
卷期号:21 (2): 911-925 被引量:522
标识
DOI:10.1111/gcb.12768
摘要

Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24–38% for the different end‐of‐season variables including grain yield ( GY ) and grain protein concentration ( GPC ). There was little relation between error of a model for GY or GPC and error for in‐season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e‐mean) or median (e‐median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e‐median ranked first in simulating measured GY and third in GPC . The error of e‐mean and e‐median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrhughas发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
6秒前
18秒前
Koala04发布了新的文献求助10
24秒前
共享精神应助抹茶采纳,获得10
25秒前
mrhughas完成签到,获得积分10
37秒前
田様应助张尧摇摇摇采纳,获得10
1分钟前
1分钟前
1分钟前
Koala04完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
闪明火龙果完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
今后应助rebeycca采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
AliEmbark完成签到,获得积分10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457