Multimodel ensembles of wheat growth: many models are better than one

环境科学
作者
Pierre Martre,Daniel Wallach,Senthold Asseng,Frank Ewert,James W. Jones,Reimund P. Rötter,Kenneth J. Boote,Alex C. Ruane,Peter J. Thorburn,Davide Cammarano,Jerry L. Hatfield,Cynthia Rosenzweig,Pramod Aggarwal,Carlos Angulo,Bruno Basso,Patrick Bertuzzi,Christian Biernath,Nadine Brisson,Andrew J. Challinor,Jordi Doltra
出处
期刊:Global Change Biology [Wiley]
卷期号:21 (2): 911-925 被引量:522
标识
DOI:10.1111/gcb.12768
摘要

Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24–38% for the different end‐of‐season variables including grain yield ( GY ) and grain protein concentration ( GPC ). There was little relation between error of a model for GY or GPC and error for in‐season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e‐mean) or median (e‐median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e‐median ranked first in simulating measured GY and third in GPC . The error of e‐mean and e‐median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
派大星完成签到 ,获得积分10
刚刚
刚刚
上官若男应助路人乙采纳,获得10
刚刚
1秒前
认真浩宇发布了新的文献求助10
1秒前
无限的板栗完成签到 ,获得积分10
1秒前
大力大楚发布了新的文献求助10
2秒前
哈哈哈完成签到 ,获得积分10
2秒前
坚强白凝完成签到,获得积分10
2秒前
开放从波发布了新的文献求助10
2秒前
闪闪的灵竹完成签到,获得积分10
2秒前
小二郎应助Yuanyuan采纳,获得10
3秒前
sip发布了新的文献求助10
3秒前
xhc发布了新的文献求助10
3秒前
3秒前
4秒前
lucky完成签到,获得积分10
4秒前
fafafa发布了新的文献求助10
6秒前
7秒前
Army616完成签到,获得积分10
7秒前
tiaot发布了新的文献求助10
8秒前
8秒前
脑洞疼应助Eddie Joe采纳,获得10
8秒前
木槿完成签到,获得积分10
8秒前
9秒前
9秒前
科研r完成签到,获得积分10
9秒前
zjm发布了新的文献求助10
10秒前
情怀应助明理的小海豚采纳,获得10
11秒前
晴青发布了新的文献求助10
11秒前
领导范儿应助整箱采纳,获得10
12秒前
yyz发布了新的文献求助30
12秒前
月涵完成签到 ,获得积分10
12秒前
路人乙发布了新的文献求助10
15秒前
乐乐应助开心一夏采纳,获得10
16秒前
bkagyin应助kai采纳,获得30
16秒前
CipherSage应助zjm采纳,获得10
16秒前
巴扎嘿完成签到,获得积分10
17秒前
17秒前
皮皮最可爱完成签到 ,获得积分10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745536
求助须知:如何正确求助?哪些是违规求助? 5427011
关于积分的说明 15353393
捐赠科研通 4885510
什么是DOI,文献DOI怎么找? 2626760
邀请新用户注册赠送积分活动 1575330
关于科研通互助平台的介绍 1532045