已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodel ensembles of wheat growth: many models are better than one

环境科学
作者
Pierre Martre,Daniel Wallach,Senthold Asseng,Frank Ewert,James W. Jones,Reimund P. Rötter,Kenneth J. Boote,Alex C. Ruane,Peter J. Thorburn,Davide Cammarano,Jerry L. Hatfield,Cynthia Rosenzweig,Pramod Aggarwal,Carlos Angulo,Bruno Basso,Patrick Bertuzzi,Christian Biernath,Nadine Brisson,Andrew J. Challinor,Jordi Doltra
出处
期刊:Global Change Biology [Wiley]
卷期号:21 (2): 911-925 被引量:522
标识
DOI:10.1111/gcb.12768
摘要

Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24–38% for the different end‐of‐season variables including grain yield ( GY ) and grain protein concentration ( GPC ). There was little relation between error of a model for GY or GPC and error for in‐season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e‐mean) or median (e‐median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e‐median ranked first in simulating measured GY and third in GPC . The error of e‐mean and e‐median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sh发布了新的文献求助10
2秒前
番茄鱼完成签到 ,获得积分10
2秒前
科研通AI2S应助醉熏的沛萍采纳,获得10
3秒前
6秒前
7秒前
科研通AI6.1应助Candy采纳,获得10
11秒前
NKKKKKK完成签到,获得积分10
11秒前
晚棠发布了新的文献求助10
11秒前
f1mike110发布了新的文献求助30
11秒前
风吹而过完成签到 ,获得积分10
12秒前
13秒前
liwang9301完成签到,获得积分10
14秒前
聆(*^_^*)完成签到 ,获得积分10
14秒前
15秒前
NKKKKKK发布了新的文献求助10
15秒前
17秒前
熊逍发布了新的文献求助10
18秒前
江枫渔火完成签到 ,获得积分10
21秒前
没见云发布了新的文献求助10
21秒前
尊敬寒松发布了新的文献求助60
25秒前
26秒前
刻苦的冬易完成签到 ,获得积分10
29秒前
脑洞疼应助f1mike110采纳,获得10
29秒前
Orange应助超级野狼采纳,获得10
29秒前
30秒前
pay发布了新的文献求助10
32秒前
33秒前
细心怀亦完成签到 ,获得积分10
37秒前
sssyyy发布了新的文献求助10
38秒前
Guts发布了新的文献求助10
38秒前
43秒前
zl13332完成签到 ,获得积分10
45秒前
shy完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
48秒前
48秒前
111发布了新的文献求助10
50秒前
50秒前
53秒前
54秒前
马宁婧完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387