Multimodel ensembles of wheat growth: many models are better than one

环境科学
作者
Pierre Martre,Daniel Wallach,Senthold Asseng,Frank Ewert,James W. Jones,Reimund P. Rötter,Kenneth J. Boote,Alex C. Ruane,Peter J. Thorburn,Davide Cammarano,Jerry L. Hatfield,Cynthia Rosenzweig,Pramod Aggarwal,Carlos Angulo,Bruno Basso,Patrick Bertuzzi,Christian Biernath,Nadine Brisson,Andrew J. Challinor,Jordi Doltra
出处
期刊:Global Change Biology [Wiley]
卷期号:21 (2): 911-925 被引量:522
标识
DOI:10.1111/gcb.12768
摘要

Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24–38% for the different end‐of‐season variables including grain yield ( GY ) and grain protein concentration ( GPC ). There was little relation between error of a model for GY or GPC and error for in‐season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e‐mean) or median (e‐median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e‐median ranked first in simulating measured GY and third in GPC . The error of e‐mean and e‐median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助GRX1110采纳,获得10
1秒前
万能图书馆应助文艺采纳,获得10
1秒前
zpp发布了新的文献求助10
2秒前
NexusExplorer应助Leslie采纳,获得10
2秒前
4秒前
5秒前
7秒前
嘿嘿应助小高采纳,获得10
8秒前
cc完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Zoe完成签到,获得积分10
11秒前
舒苏应助ABCDE采纳,获得30
13秒前
14秒前
慧子完成签到,获得积分10
14秒前
小二郎应助家夜雪采纳,获得10
14秒前
shiiiny发布了新的文献求助10
14秒前
合适白猫完成签到,获得积分10
15秒前
BowieHuang应助元谷雪采纳,获得10
15秒前
薄荷完成签到,获得积分10
15秒前
16秒前
害怕的帽子完成签到 ,获得积分10
16秒前
17秒前
18秒前
寇博翔发布了新的文献求助10
19秒前
烂漫的飞松完成签到,获得积分10
19秒前
苹果冬莲完成签到,获得积分10
19秒前
去心邻域完成签到,获得积分10
20秒前
天地一体完成签到,获得积分10
23秒前
25秒前
梦玲完成签到 ,获得积分10
25秒前
小二郎应助可可奇采纳,获得10
28秒前
29秒前
慕青应助tguczf采纳,获得10
29秒前
30秒前
30秒前
NexusExplorer应助小高采纳,获得10
30秒前
张贵虎完成签到 ,获得积分10
31秒前
李兴完成签到 ,获得积分10
31秒前
32秒前
华仔应助11采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867