Metal artifact reduction in spiral fan-beam CT using a new sinogram segmentation scheme

螺旋(铁路) 分割 工件(错误) 还原(数学) 人工智能 计算机视觉 放射科 医学 计算机科学 工程类 数学 几何学 机械工程
作者
Mehran Yazdi,Zohre Mansourian
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:25 (5): 737-749 被引量:3
标识
DOI:10.3233/xst-16224
摘要

Objective of this study is to present and test a new method for metal artifact reduction (MAR) by segmenting raw CT data (sinogram). The artifact suppression technique incorporates two steps namely, metal projection segmentation in the sinogram and replacement of segmented regions by new values usi ng an interpolation method. The proposed segmentation algorithm uses the sinogram instead of reconstructed CT slices. First, one of the best and newest region-based geometric active contour models is used to detect projection data affected by metal objects (missing projections). Then, the Hough-transform method is applied to detect all sinusoidal-like curves belonging to metal objects. Finally, a post image processing technique is used aiming to increase accuracy of the segmentation process. To provide a proof of performance, CT data of two patients with metallic teeth filling and pelvis prosthesis were included in the study as well as CT data of a phantom with metallic teeth inserts. Accuracy was determined by comparing mean, variance, mean squared error (MSE) and, peak signal to noise ratio (PSNR) as evaluation measurements of distortion in phantom images with respect to metallic teeth (original and suppressed) and without metallic teeth inserts. Quantitative results showed an average improvement of 12 dB in terms of PSNR and 517 in terms of MSE when the new MAR method was applied to remove metal artifacts. Qualitative improvement was also assessed by comparing uncorrected clinical images with artifact suppressed images. Moreover, qualitative comparison of the results of the proposed new method with the existing methods of MAR showed the superiority of the new method tested in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅花K完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
柔弱绝施完成签到,获得积分20
刚刚
2秒前
Roger完成签到,获得积分10
2秒前
3秒前
3秒前
我是老大应助jeff采纳,获得10
3秒前
4秒前
小蘑菇应助fang20130608采纳,获得10
5秒前
leeee完成签到,获得积分10
5秒前
浅夏发布了新的文献求助10
5秒前
脑洞疼应助浮浮世世采纳,获得10
6秒前
枕漱发布了新的文献求助10
6秒前
6秒前
小米完成签到,获得积分10
6秒前
虚心飞鸟发布了新的文献求助10
7秒前
8秒前
8秒前
犯困嫌疑人完成签到,获得积分10
8秒前
小溪发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
自信南霜完成签到 ,获得积分10
9秒前
HCY完成签到,获得积分10
9秒前
漂亮幻莲发布了新的文献求助10
10秒前
神勇冷亦完成签到,获得积分20
10秒前
李爱国应助疯狂的红牛采纳,获得10
10秒前
yisheng发布了新的文献求助10
10秒前
11秒前
花无双完成签到,获得积分0
11秒前
11秒前
vv发布了新的文献求助10
12秒前
12秒前
12秒前
Lux发布了新的文献求助10
13秒前
小溪完成签到,获得积分10
14秒前
Owen应助张jiu采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770918
求助须知:如何正确求助?哪些是违规求助? 5588554
关于积分的说明 15426008
捐赠科研通 4904290
什么是DOI,文献DOI怎么找? 2638685
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541645