吸附
介孔材料
材料科学
化学工程
砷
亚砷酸盐
镁
粒径
粒子(生态学)
多孔性
氧化物
无机化学
纳米技术
催化作用
有机化学
复合材料
化学
冶金
工程类
地质学
海洋学
作者
Swasmi Purwajanti,Hongwei Zhang,Xiaodan Huang,Hao Song,Yannan Yang,Jun Zhang,Yuting Niu,Anand Kumar Meka,Owen Noonan,Chengzhong Yu
标识
DOI:10.1021/acsami.6b08322
摘要
Arsenic contamination in natural water has posed a significant threat to global health due to its toxicity and carcinogenity. Adsorption technology is an easy and flexible method for arsenic removal with high efficiency. In this Article, we demonstrated the synthesis of mesoporous MgO hollow spheres (MgO-HS) and their application as high performance arsenite (As(III)) adsorbent. MgO-HS with uniform particle size (∼180 nm), high specific surface area (175 m(2) g(-1)), and distinguished mesopores (9.5 nm in size) have been prepared by hard-templating approach using mesoporous hollow carbon spheres as templates. An ultrahigh maximum As(III) adsorption capacity (Qmax) of 892 mg g(-1) was achieved in batch As(III) removal study. Adsorption kinetic study demonstrated that MgO-HS could enable As(III) adsorption 6 times faster as a commercial MgO adsorbent. The ultrahigh adsorption capacity and faster adsorption kinetics were attributed to the unique structure and morphology of MgO-HS that enabled fast transformation into a flower-like porous structure composed of ultrathin Mg(OH)2 nanosheets. This in situ formed structure provided abundant and highly accessible hydroxyl groups, which enhanced the adsorption performance toward As(III). The outstanding As(III) removal capability of MgO-HS showed their great promise as highly efficient adsorbents for As(III) sequestration from contaminated water.
科研通智能强力驱动
Strongly Powered by AbleSci AI