PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography

部分容积 正电子发射断层摄影术 工具箱 体积热力学 计算机科学 核医学 断层摄影术 扫描仪 医学物理学 人工智能 医学 物理 放射科 程序设计语言 量子力学
作者
Benjamin A. Thomas,V. Cuplov,Alexandre Bousse,Adriana Mendes,Kris Thielemans,Brian F. Hutton,Kjell Erlandsson
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:61 (22): 7975-7993 被引量:130
标识
DOI:10.1088/0031-9155/61/22/7975
摘要

Positron emission tomography (PET) images are degraded by a phenomenon known as the partial volume effect (PVE). Approaches have been developed to reduce PVEs, typically through the utilisation of structural information provided by other imaging modalities such as MRI or CT. These methods, known as partial volume correction (PVC) techniques, reduce PVEs by compensating for the effects of the scanner resolution, thereby improving the quantitative accuracy. The PETPVC toolbox described in this paper comprises a suite of methods, both classic and more recent approaches, for the purposes of applying PVC to PET data. Eight core PVC techniques are available. These core methods can be combined to create a total of 22 different PVC techniques. Simulated brain PET data are used to demonstrate the utility of toolbox in idealised conditions, the effects of applying PVC with mismatched point-spread function (PSF) estimates and the potential of novel hybrid PVC methods to improve the quantification of lesions. All anatomy-based PVC techniques achieve complete recovery of the PET signal in cortical grey matter (GM) when performed in idealised conditions. Applying deconvolution-based approaches results in incomplete recovery due to premature termination of the iterative process. PVC techniques are sensitive to PSF mismatch, causing a bias of up to 16.7% in GM recovery when over-estimating the PSF by 3 mm. The recovery of both GM and a simulated lesion was improved by combining two PVC techniques together. The PETPVC toolbox has been written in C++, supports Windows, Mac and Linux operating systems, is open-source and publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
缥缈橘子发布了新的文献求助10
1秒前
阳光谷完成签到,获得积分10
1秒前
美好的冰蓝完成签到 ,获得积分10
2秒前
lixiaorui发布了新的文献求助10
3秒前
科研通AI6应助江楠采纳,获得10
4秒前
酷波er应助雨雨爱薯条采纳,获得10
4秒前
852应助qq采纳,获得10
4秒前
5秒前
阳光谷发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
机灵千萍完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
领导范儿应助XL神放采纳,获得10
8秒前
minmin发布了新的文献求助10
8秒前
pterionGao发布了新的文献求助10
8秒前
8秒前
badjack完成签到,获得积分10
9秒前
9秒前
ggg发布了新的文献求助10
10秒前
11秒前
神经网络模型完成签到,获得积分10
12秒前
12秒前
今后应助初遇之时最暖采纳,获得10
12秒前
13秒前
13秒前
共享精神应助阿宋采纳,获得10
13秒前
13秒前
suda发布了新的文献求助10
13秒前
14秒前
idannn发布了新的文献求助10
15秒前
派大星完成签到,获得积分20
16秒前
噗哩大王发布了新的文献求助30
16秒前
养生坤坤发布了新的文献求助10
16秒前
hexinyu发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091