Morphology controlled MnO 2 electrodeposited on carbon fiber paper for high-performance supercapacitors

材料科学 超级电容器 复合数 电容 电极 纳米片 纳米棒 纳米花 扫描电子显微镜 化学工程 纳米技术 水平扫描速率 电化学 石墨烯 形态学(生物学) 复合材料 纳米结构 循环伏安法 化学 物理化学 工程类 生物 遗传学
作者
Zhiguo Ye,Tao Li,Guang Ma,Xinyuan Peng,Jun Zhao
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:351: 51-57 被引量:97
标识
DOI:10.1016/j.jpowsour.2017.03.104
摘要

Four different morphologies of nanostructured MnO2 (nanospheres, nanosheets, nanoflowers and nanonods) were fabricated on a carbon fiber paper (CFP) substrate using a facile method of anodic electrodeposition by varying the H2SO4 concentration and current density. The fabricated composite electrodes were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electrochemical techniques. The composite electrodes with MnO2 nanosphere/CFP, MnO2 nanosheet/CFP, MnO2 nanoflower/CFP and MnO2 nanonod/CFP achieved a relatively high specific capacitance (areal capacitance) of 134.4 F g−1 (0.20 F cm−2), 226.3 F g−1 (0.33 F cm−2), 235.6 F g−1 (0.35 F cm−2) and 362.5 F g−1 (0.54 F cm−2) at 0.5 A g−1, respectively. When the GV charging-discharging rate increased from 0.5 to 5 A g−1, the MnO2 nanorod/CFP composite decreased from 362.5 F g−1 (0.54 F cm−2) to 160.0 F g−1 (0.24 F cm−2), which is a relatively high retention of the original capacitance (i.e., 44.1%). All the composite electrodes with various nanostructured MnO2 morphologies under flat and bent states retained more than 95% and 90% of the initial capacitance after 5000 cycles at 5 A g−1, respectively, which demonstrates outstanding cycling stability. This study provides a novel approach for high-performance, morphology-controllable metal oxide electrodes for supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助幸福胡萝卜采纳,获得10
刚刚
通~发布了新的文献求助10
刚刚
1秒前
科目三应助Arnold采纳,获得10
1秒前
润润轩轩发布了新的文献求助10
2秒前
宗笑晴发布了新的文献求助10
2秒前
lucky完成签到,获得积分10
2秒前
糖糖发布了新的文献求助10
3秒前
3秒前
跳跃尔容完成签到,获得积分10
4秒前
wyblobin完成签到,获得积分10
4秒前
4秒前
5秒前
沉默沛岚完成签到,获得积分10
5秒前
丰知然应助宇文宛菡采纳,获得10
5秒前
所所应助tu采纳,获得30
6秒前
mechefy完成签到,获得积分10
6秒前
鲤鱼萧完成签到,获得积分10
7秒前
宗笑晴完成签到,获得积分10
7秒前
8秒前
小蘑菇应助头发乱了采纳,获得10
8秒前
代萌萌发布了新的文献求助10
9秒前
jucy发布了新的文献求助50
9秒前
9秒前
Lz完成签到,获得积分10
9秒前
Hello应助葛辉辉采纳,获得10
9秒前
秦嘉旎完成签到,获得积分10
10秒前
华仔应助通~采纳,获得10
10秒前
万能图书馆应助半颗橙子采纳,获得10
10秒前
樱铃完成签到,获得积分10
11秒前
11秒前
上官若男应助俭朴的明轩采纳,获得10
11秒前
1199发布了新的文献求助10
12秒前
英姑应助包容的过客采纳,获得10
13秒前
标致的战斗机完成签到,获得积分10
13秒前
科研人发布了新的文献求助10
14秒前
hl完成签到,获得积分10
14秒前
14秒前
14秒前
科研通AI5应助dingdong采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762