材料科学
超级电容器
复合数
电容
电极
纳米片
纳米棒
纳米花
扫描电子显微镜
化学工程
纳米技术
水平扫描速率
电化学
石墨烯
形态学(生物学)
复合材料
纳米结构
循环伏安法
化学
物理化学
工程类
生物
遗传学
作者
Zhiguo Ye,Tao Li,Guang Ma,Xinyuan Peng,Jun Zhao
标识
DOI:10.1016/j.jpowsour.2017.03.104
摘要
Four different morphologies of nanostructured MnO2 (nanospheres, nanosheets, nanoflowers and nanonods) were fabricated on a carbon fiber paper (CFP) substrate using a facile method of anodic electrodeposition by varying the H2SO4 concentration and current density. The fabricated composite electrodes were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electrochemical techniques. The composite electrodes with MnO2 nanosphere/CFP, MnO2 nanosheet/CFP, MnO2 nanoflower/CFP and MnO2 nanonod/CFP achieved a relatively high specific capacitance (areal capacitance) of 134.4 F g−1 (0.20 F cm−2), 226.3 F g−1 (0.33 F cm−2), 235.6 F g−1 (0.35 F cm−2) and 362.5 F g−1 (0.54 F cm−2) at 0.5 A g−1, respectively. When the GV charging-discharging rate increased from 0.5 to 5 A g−1, the MnO2 nanorod/CFP composite decreased from 362.5 F g−1 (0.54 F cm−2) to 160.0 F g−1 (0.24 F cm−2), which is a relatively high retention of the original capacitance (i.e., 44.1%). All the composite electrodes with various nanostructured MnO2 morphologies under flat and bent states retained more than 95% and 90% of the initial capacitance after 5000 cycles at 5 A g−1, respectively, which demonstrates outstanding cycling stability. This study provides a novel approach for high-performance, morphology-controllable metal oxide electrodes for supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI