Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials

石墨烯 材料科学 纳米技术 神经干细胞 接口 生物物理学 干细胞 细胞生物学 生物 计算机科学 生物化学 计算机硬件
作者
Rongrong Guo,Shasha Zhang,Miao Xiao,Fuping Qian,Zuhong He,Dan Li,Yuling Li,Huawei Li,Xiaowei Yang,Ming Wang,Renjie Chai,Mingliang Tang
出处
期刊:Biomaterials [Elsevier]
卷期号:106: 193-204 被引量:119
标识
DOI:10.1016/j.biomaterials.2016.08.019
摘要

In order to govern cell-specific behaviors in tissue engineering for neural repair and regeneration, a better understanding of material-cell interactions, especially the bioelectric functions, is extremely important. Graphene has been reported to be a potential candidate for use as a scaffold and neural interfacing material. However, the bioelectric evolvement of cell membranes on these conductive graphene substrates remains largely uninvestigated. In this study, we used a neural stem cell (NSC) model to explore the possible changes in membrane bioelectric properties - including resting membrane potentials and action potentials - and cell behaviors on graphene films under both proliferation and differentiation conditions. We used a combination of single-cell electrophysiological recordings and traditional cell biology techniques. Graphene did not affect the basic membrane electrical parameters (capacitance and input resistance), but resting membrane potentials of cells on graphene substrates were more strongly negative under both proliferation and differentiation conditions. Also, NSCs and their progeny on graphene substrates exhibited increased firing of action potentials during development compared to controls. However, graphene only slightly affected the electric characterizations of mature NSC progeny. The modulation of passive and active bioelectric properties on the graphene substrate was accompanied by enhanced NSC differentiation. Furthermore, spine density, synapse proteins expressions and synaptic activity were all increased in graphene group. Modeling of the electric field on conductive graphene substrates suggests that the electric field produced by the electronegative cell membrane is much higher on graphene substrates than that on control, and this might explain the observed changes of bioelectric development by graphene coupling. Our results indicate that graphene is able to accelerate NSC maturation during development, especially with regard to bioelectric evolvement. Our findings provide a fundamental understanding of the role of conductive materials in tuning the membrane bioelectric properties in a graphene model and pave the way for future studies on the development of methods and materials for manipulating membrane properties in a controllable way for NSC-based therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖糖完成签到,获得积分10
2秒前
6秒前
12秒前
机灵柚子应助无极微光采纳,获得20
12秒前
蘑菇完成签到 ,获得积分10
14秒前
小黑子fanfan完成签到,获得积分10
14秒前
xixihaha完成签到,获得积分10
16秒前
宇宙无敌完成签到 ,获得积分10
16秒前
18秒前
享文发布了新的文献求助10
22秒前
大模型应助有亿点想睡觉采纳,获得10
22秒前
zx完成签到 ,获得积分10
25秒前
yaosan完成签到,获得积分10
26秒前
26秒前
28秒前
28秒前
28秒前
wbqdssl应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
29秒前
wbqdssl应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
wbqdssl应助科研通管家采纳,获得10
29秒前
wbqdssl应助科研通管家采纳,获得10
29秒前
张国宇完成签到,获得积分10
29秒前
享文完成签到,获得积分10
30秒前
31秒前
33秒前
明亮的念梦完成签到 ,获得积分10
35秒前
点点点完成签到,获得积分10
37秒前
大模型应助小嘎采纳,获得10
39秒前
GT完成签到,获得积分0
40秒前
拼搏半梦完成签到,获得积分10
41秒前
冷笑完成签到,获得积分10
42秒前
hhl完成签到,获得积分10
44秒前
47秒前
48秒前
叶春意完成签到,获得积分10
49秒前
安静的幻竹完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856827
求助须知:如何正确求助?哪些是违规求助? 6324695
关于积分的说明 15635304
捐赠科研通 4971265
什么是DOI,文献DOI怎么找? 2681302
邀请新用户注册赠送积分活动 1625215
关于科研通互助平台的介绍 1582265