大肠杆菌
数字聚合酶链反应
质粒
志贺毒素
化学
DNA
色谱法
聚合酶链反应
分子生物学
分析化学(期刊)
生物
基因
生物化学
作者
Wen‐Tzong Liang,Li Xu,Zhiwei Sui,Yan Li,Lanying Li,Yanli Wen,Chunhua Li,Shuzhen Ren,Gang Liu
标识
DOI:10.1186/s13065-016-0201-0
摘要
The accuracy and metrology traceability of DNA quantification is becoming a critical theme in many fields, including diagnosis, forensic analysis, microorganism detection etc. Thus the research of DNA reference materials (RMs) and consistency of DNA quantification methods has attracted considerable research interest. In this work, we developed 3 plasmid candidate RMs, containing 3 target genes of Escherichia coli O157:H7 (E. coli O157:H7) and other Shiga toxin-producing Escherichia coli (STEC): stx1, stx2, and fliC (h7) respectively. Comprehensive investigation of the plasmid RMs was performed for their sequence, purity, homogeneity and stability, and then the concentration was quantified by three different methods: ultraviolet spectrophotometer (UV), high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and digital PCR. As a routinely applied method for DNA analysis, UV was utilized for the quantification (OD260) and purity analysis for the plasmids. HR-ICP-MS quantified the plasmid DNA through analysing the phosphorus in DNA molecules. Digital PCR distributed the DNA samples onto a microarray chip containing thousands of reaction chambers, and quantified the DNA copy numbers by analysing the number of positive signals without any calibration curves needed. Based on the high purification of the DNA reference materials and the optimization of dPCR analysis, we successfully achieved good consistency between UV, HR-ICP-MS and dPCR, with relative deviations lower than 10 %. We then performed the co-quantification of 3 DNA RMs with three different methods together, and the uncertainties of their concentration were evaluated. Finally, the certified values and expanded uncertainties for 3 DNA RMs (pFliC, pStx1 and pStx2) were (1.60 ± 0.10) × 1010 copies/μL, (1.53 ± 0.10) × 1010 copies/μL and (1.70 ± 0.11) × 1010 copies/μL respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI