环氧丙烷
淀粉
变性淀粉
极限抗拉强度
粘度
化学
门尼粘度
钠
核化学
材料科学
化学工程
有机化学
聚合物
复合材料
共聚物
工程类
环氧乙烷
作者
Lixia Wang,Liu Xiang-hua,Jingzhen Wang
标识
DOI:10.1080/10942912.2016.1209775
摘要
Modified yam starch and dual-modified yam starch were produced with propylene oxide, sodium trimetaphosphate and sodium tripolyphosphate. Gelatinization temperature and final viscosity of native yam starch were 79.2 ± 0.4°C and 5702 ± 3 cP. Results showed that the molar substitution and degree of substitution were increased with the volume fraction of propylene oxide from 6–12%, the highest of molar substitution and degree of substitution were 0.0445 ± 0.0003 and 0.0065 ± 0.0006, the final viscosity and setback of dual-modified yam starch were also similar. However, the gelatinization parameters showed an inverse trend. Starch modified with a mixture of sodium trimetaphosphate and sodium tripolyphosphate had higher phosphorus content and increased viscosity compared to starch modified with sodium trimetaphosphate. The peak viscosity of starch modified with propylene oxide was higher than that of native yam starch and the highest was HP12. The granular surface of modified yam starch and dual-modified yam starch appeared significantly embossed and indented, while. Modified yam starch film treated with 12% propylene oxide showed a more homogeneous fractured surface. The tensile strength and elongation at break (E) of starch films were affected by crosslinking reagents and propylene oxide, respectively. The best transparence and E were demonstrated in starch film that was modified with 12% propylene oxide. However, the best tensile strength was demonstrated in starch film that was modified with 8% propylene oxide, sodium trimetaphosphate, and sodium tripolyphosphate. The final viscosity of HP6C1 and HP6C2 was 27 ± 7 and 45 ± 9 cP, which was too low to form film.
科研通智能强力驱动
Strongly Powered by AbleSci AI