煅烧
材料科学
超级电容器
氢氧化物
金属有机骨架
化学工程
纳米材料
多孔性
金属氢氧化物
层状双氢氧化物
水解
纳米技术
比表面积
电化学
电极
无机化学
催化作用
化学
有机化学
吸附
复合材料
物理化学
工程类
作者
Zhenyu Xiao,Yingjie Mei,Shuai Yuan,Hao Mei,Ben Xu,Yuxiang Bao,Lili Fan,Wenpei Kang,Fangna Dai,Rongming Wang,Lei Wang,Songqing Hu,Daofeng Sun,Hong‐Cai Zhou
出处
期刊:ACS Nano
[American Chemical Society]
日期:2019-05-23
卷期号:13 (6): 7024-7030
被引量:358
标识
DOI:10.1021/acsnano.9b02106
摘要
Pseudomorphic conversion of metal-organic frameworks (MOFs) enables the fabrication of nanomaterials with well-defined porosities and morphologies for enhanced performances. However, the commonly reported calcination strategy usually requires high temperature to pyrolyze MOF particles and often results in uncontrolled growth of nanomaterials. Herein, we report the controlled alkaline hydrolysis of MOFs to produce layered double hydroxide (LDH) while maintaining the porosity and morphology of MOF particles. The preformed trinuclear M3(μ3-OH) (M = Ni2+ and Co2+) clusters in MOFs were demonstrated to be critical for the pseudomorphic transformation process. An isotopic tracing experiment revealed that the 18O-labeled M3(μ3-18OH) participated in the structural assembly of LDH, which avoided the leaching of metal cations and the subsequent uncontrolled growth of hydroxides. The resulting LDHs maintain the spherical morphology of MOF templates and possess a hierarchical porous structure with high surface area (BET surface area up to 201 m2·g-1), which is suitable for supercapacitor applications. As supercapacitor electrodes, the optimized LDH with the Ni:Co molar ratio of 7:3 shows a high specific capacitance (1652 F·g-1 at 1 A·g-1) and decent cycling performance, retaining almost 100% after 2000 cycles. Furthermore, the hydrolysis method allows the recycling of organic ligands and large-scale synthesis of LDH materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI